首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11227篇
  免费   1671篇
  国内免费   1769篇
测绘学   276篇
大气科学   950篇
地球物理   2296篇
地质学   4086篇
海洋学   2380篇
天文学   10篇
综合类   572篇
自然地理   4097篇
  2024年   42篇
  2023年   190篇
  2022年   472篇
  2021年   508篇
  2020年   457篇
  2019年   524篇
  2018年   444篇
  2017年   525篇
  2016年   495篇
  2015年   562篇
  2014年   685篇
  2013年   749篇
  2012年   688篇
  2011年   760篇
  2010年   626篇
  2009年   715篇
  2008年   776篇
  2007年   785篇
  2006年   716篇
  2005年   562篇
  2004年   555篇
  2003年   502篇
  2002年   332篇
  2001年   303篇
  2000年   301篇
  1999年   249篇
  1998年   164篇
  1997年   155篇
  1996年   154篇
  1995年   132篇
  1994年   128篇
  1993年   86篇
  1992年   86篇
  1991年   64篇
  1990年   57篇
  1989年   34篇
  1988年   22篇
  1987年   9篇
  1986年   8篇
  1985年   13篇
  1984年   8篇
  1983年   5篇
  1982年   3篇
  1981年   10篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
992.
Irrigation is the major water supply for crop production in water‐limited regions. However, this important water component is usually neglected or simplified in hydrological modelling primarily because information concerning irrigation is notably difficult to collect. To assess real effects of irrigation on the simulation of evapotranspiration (ET) in water‐limited region, the Community Land Model version 4 was established over a typical semi‐humid agricultural basin in the northern China – the Haihe River basin. In the irrigated cropland, incorporating an irrigation scheme can enhance the simulated ET and improve the simulation of spatial variability of soil moisture content. We found that different configurations in the irrigation scheme do not cause significant differences in the simulated annual ET. However, simulated ET with simulated irrigation differs clearly from that with observed irrigation in mean annual magnitude, long‐term trend and spatial distribution. Once the irrigation scheme is well‐calibrated against observations, it reasonably reproduces the interannual variability of annual irrigation, when irrigation water management is relatively stable. More importantly, parameter calibration should be consistent with the configuration of the source of irrigation water. However, an irrigation scheme with a constant parameter value cannot capture the trend in the annual irrigation amount caused by abrupt changes in agricultural water management. Compared with different remotely sensed ET products, the enhancement in the simulated ET by irrigation is smaller than the differences among these products, and the trend in simulated ET with the observed irrigation cannot be captured correctly by the remotely sensed ET. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
993.
Abstract

Abstract The construction of the Gabcikovo hydropower plant and the diversion of the Danube River over 25 km into an artificial channel in 1992 influenced the groundwater regime of the region considerably. Statistical and geostatistical methods are used to quantify changes of different groundwater characteristics on the Hungarian side of the river based on observations in the time period 1960–2000. External drift kriging was used to interpolate groundwater levels and the other related variables. While mean groundwater levels did not change appreciably, there are significant changes in the variability. Standard deviations of the groundwater levels and the amplitude of the annual cycle decreased near the old river bed of the Danube. The water-level fluctuations of the Danube have a decreased influence on the groundwater dynamics. Interrelationships between water levels in wells have also changed.  相似文献   
994.
R. J. Harding  C. R. Lloyd 《水文研究》2008,22(13):2346-2357
Wet grasslands are important both for their conservation value and for their important hydrological function. Evaporation is an important component of the water balance of a wetland. Where water is limited rainfall and/or surface (or sub‐surface) inflows are required to balance the summer evaporation and thus become a significant factor in the maintenance and environmental health of a wetland. This study presents an almost complete year of measurements of the water and energy balance of a wet grassland in the Somerset Levels in southwest England. The majority of the radiant energy at this site goes into evaporation. There is a strong seasonality of the controls on evaporation; the roughness length varies by a factor of 10 between winter and summer. The surface resistance to evaporation is low, close to zero, during the winter when the water table is at, or just below the surface. In the summer the water table drops to 80 cm below the surface; there is no sign of soil water stress on the evaporation but a clear effect of the senescence of grass during seed head production and of the subsequent harvest. There is clear evidence that water for evaporation is provided by the drainage ditches through sub‐surface flow. Standard evaporation formulae—such as the Penman‐Monteith equation with constant and standard parameters—provide a reasonable simulation of the total evaporation at this site, although they miss some of the seasonal detail. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
995.
Abstract

Tile drainage influences infiltration and surface runoff and is thus an important factor in the erosion process. Tile drainage reduces surface runoff, but questions abound on its influence on sediment transport through its dense network and into the stream network. The impact of subsurface tiling on upland erosion rates in the Le Sueur River watershed, USA, was assessed using the Water Erosion Prediction Project (WEPP) model. Six different scenarios of tile drainage with varying drainage coefficient and management type (no till and autumn mulch-till) were evaluated. The mean annual surface runoff depth, soil loss rate and sediment delivery ratio (SDR) for croplands, based on a 30-year simulation for the watershed with untiled autumn mulch-till (Scenario 1), were estimated to be 83.5 mm, 0.27 kg/m2 and 86.7%, respectively; on no-till management systems (Scenario 4), the respective results were 72.3 mm, 0.06 kg/m2 and 88.2%. Tile drains reduced surface runoff, soil loss and SDR estimates for Scenario 1 by, on average, 14.5, 8.1 and 7.9%, respectively; and for Scenario 4 by an estimated 31.5, 22.1 and 20.2%, respectively. The impact of tile drains on surface runoff, soil loss and SDR was greater under the no-till management system than under the autumn mulch-till management system. Comparison of WEPP outputs with those of the Soil Water Assessment Tool (SWAT) showed differences between the two methods.

Editor Z.W. Kundzewicz

Citation Maalim, F.K. and Melesse. A.M., 2013. Modelling impacts of subsurface drainage on surface runoff and sediment yield in the Le Sueur Watershed in Minnesota, USA. Hydrological Sciences Journal, 58 (3), 570–586.  相似文献   
996.
Abstract

In the first part of this study, a flood wave transformation analysis for the largest historical floods in the Danube River reach Kienstock–Bratislava was carried out. For the simulation of the historical (1899 and 1954) flood propagation, the nonlinear river model NLN-Danube (calibrated on the recent river reach conditions) was used. It was shown that the simulated peak discharges were not changed significantly when compared to their historical counterparts. However, the simulated hydrographs exhibit a significant acceleration of the flood wave movement at discharges of between 5000 and 9000 m3 s-1. In the second part, the travel time-water level relationships between Kienstock and Bratislava were analysed on a dataset of the flood peak water levels for the period 1991–2002. An empirical regression routing scheme for the Danube short-term water level forecast at Bratislava station was derived. This is based on the measured water level at Kienstock gauging station.  相似文献   
997.
Selecting the correct resolution in distributed hydrological modelling at the watershed scale is essential in reducing scale-related errors. The work presented herein uses information content (entropy) to identify the resolution which captures the essential variability, at the watershed scale, of the infiltration parameters in the Green and Ampt infiltration equation. A soil map of the Little Washita watershed in south-west Oklahoma, USA was used to investigate the effects of grid cell resolution on the distributed modelling of infiltration. Soil-derived parameters and infiltration exhibit decreased entropy as resolutions become coarser. This is reflected in a decrease in the maximum entropy value for the reclassified/derived parameters vis a vis the original data. Moreover, the entropy curve, when plotted against resolution, shows two distinct segments: a constant section where no entropy was lost with decreasing resolution and another part which is characterized by a sharp decrease in entropy after a critical resolution of 1209 m is reached. This methodology offers a technique for assessing the largest cell size that captures the spatial variability of infiltration parameters for a particular basin. A geographical information system (GIS) based rainfall-runoff model is used to simulate storm hydrographs using infiltration parameter maps at different resolutions as inputs. Model results up to the critical resolution are reproducible and errors are small. However, at resolutions beyond the critical resolution the results are erratic with large errors. A major finding of this study is that a large resolution (1209 m for this basin) yields reproducible model results. When modelling a river basin using a distributed model, the resolution (grid cell size) can drastically affect the model results and calibration. The error structure attributable to grid cell resolution using entropy as a spatial variability measure is shown.  相似文献   
998.
分别于2000年4月、2001年4月和2002年8月对珠江河口水域海洋经济动物体内Cu、Pb、Zn、Cd四种重金属元素的含量进行了调查分析,结果表明,14种经济动物体肌肉Cd、Cu、Pb、Zn各元素的平均含量分别是0.08、2.67、0.05、5.69mg·kg~(-1),其变化范围为nd~0.46mg·kg~(-1)、0.24~11.85mg·kg~(-1)、nd~0.26mg·kg~(-1)、1.55~18.36mg·kg~(-1)。甲壳类与头足类生物体内铜铅锌镉含量比较接近,远远高于鱼类的含量。所检测的14种经济类海洋动物中,虾姑、乌贼Cu的含量高于其余三种元素的含量,其余12种生物Zn的含量比另三种元素含量高。三次调查该水域经济类海洋动物体铜铅锌镉的含量基本一致。与水产品中有毒有害物质限量标准比较,14种被测样品铜、铅和镉的含量全部符合该标准的要求。  相似文献   
999.
1000.
Based on a new idea for research on cycling of marine biogenic elements, this study showed that only the leachable form phosphorus in natural grain sizes manne sediments constitutes the transferable phosphorous in the sediments. The transferable phosphorus content in the natural grain sizes surface sediments in the Huanghe River estuary adjacent waters ranges from 58.5-69.8 μg/g, accounting for only 9.1%-11.0% of the total phosphorus content, whereas the leachable form (“transferable” )phosphorus content in the sediment after it was totally ground into powder was found to be 454.8-529.2μg/g, accounting for 73.4%-89.1% of the total phosphorus. Analysis of the correlation between thebill,ass of benthos and the leachable form (“transferable” ) phosphorus showed that most of the leachableform (“transferable”) phosphorus in the totally ground sediment did not participate in the marine biogeo chemical cycling. Furthermore, a synchronous survey on benthos showed that the biornass of meio-and maero-benthos exhibited good positive correlation with the leachable form of phosphorus in the naturalgrain sizes sediment, but peorer correlation with the leachable form (“transferable”) phosphorus in the totally ground sediment, indicating that transferable phosphorus in marine sediment is the leachable form of phosphorus in the natural grain sizes sediments, and is not the previously known leachable form(“transferable”) phosphorus obtained from the totally ground sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号