首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   6篇
  国内免费   5篇
地球物理   57篇
地质学   5篇
海洋学   48篇
天文学   1篇
综合类   2篇
自然地理   16篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   9篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   4篇
  2011年   4篇
  2010年   10篇
  2009年   8篇
  2008年   9篇
  2007年   9篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
21.
22.
In this paper, cluster analysis (CA), principal component analysis (PCA) and the fuzzy logic approach were employed to evaluate the trophic status of water quality for 12 monitoring stations in Daya Bay in 2003. CA grouped the four seasons into four groups (winter, spring, summer and autumn) and the sampling sites into two groups (cluster DA: S1, S2, S4-S7, S9 and S12 and cluster DB: S3, S8, S10 and S11). PCA identified the temporal and spatial characteristics of trophic status in Daya Bay. Cluster DB, with higher concentrations of TP and DIN, is located in the western and northern parts of Daya Bay. Cluster DA, with the low Secchi, is located in the southern and eastern parts of Daya Bay. The fuzzy logic approach revealed more information about the temporal and spatial patterns of the trophic status of water quality. Chlorophyll a, TP and Secchi may be major factors for deteriorating water quality.  相似文献   
23.
Artificial reefs can enhance habitat heterogeneity, especially in seabed degraded by bottom-dredging and trawling. However, the trophodynamics of such reef systems are not well understood. This study provided baseline data on trophic relationships in the benthic environment associated with artificial reefs in late spring and mid summer of subtropical Hong Kong, using fatty acid profiles as an indicator. Data from sediments collected at the reef base, materials from sediment traps deployed on top and bottom of the reefs, total particulate matter from the water column and oyster tissues from reef surface were subjected to principal component analysis. Results showed variations of fatty acid profiles in the total particulate matter, upper sediment trap and oyster tissue samples collected in the two samplings, indicating seasonal, trophodynamic changes within the reef system. The wastes produced by fish aggregating at the reefs can also contribute a source of biodeposits to the nearby benthic environment.  相似文献   
24.
A 1-year cycle of observations was performed in four Sicilian transitional water systems (Oliveri-Tindari, Cape Peloro, Vendicari and Marsala) to characterise their ecological status. A panel of variables among which trophic and microbial (enzyme activities, abundance of hetetrophic bacteria and of bacterial pollution indicators) parameters, were selected. Particulate organic carbon (POC) and nitrogen (PON) and chlorophyll-a (Chl-a) contents defined the trophic state, while microbial hydrolysis rates and abundance gave insights on microbial community efficiency in organic matter transformation and on allochthonous inputs. To classify the trophic state of examined waters, the synthetic trophic state index (TRIX) was calculated.Microbial hydrolysis rates correlated positively with POC and Chl-a, which increased along the eutrophication gradient. The significant relationships among TRIX, trophic and microbial parameters suggested the use of leucine aminopeptidase, alkaline phosphatase and POC as suitable parameters to implement the Water Framework Directive when assessing the ecological status of transitional water systems.  相似文献   
25.
The planktonic community of freshwater Rotifera in 27 subtropical lakes was studied to assess the relative importance of physicochemical factors and crustacean zooplankton as determinants of rotifer density and species distribution. Factor analysis and multiple linear regressions showed that 21.9% and 29.9% of the variance in rotifer density was explained by physicochemical factors and crustaceans, respectively. Larger rotifer density was possible in shallower lakes with higher concentration of inorganic nitrogen and less herbivorous crustaceans such as Sinocalanus dorrii and Daphnia. Redundancy analysis showed that the variances of rotifer species distribution explained by crustaceans and physicochemical factors were 26.9% and 31.0%, respectively. Further analysis demonstrated that the variances explained by pure crustaceans and pure physicochemical factors were 12.5% and 16.6%, respectively. However, these two percentages were not statistically different. Rotifer species distribution was strongly associated with Chl a and Moina micrura. Their coexistence with crustaceans seemed to be determined by their defense against potential predators and competitors.  相似文献   
26.
The relationships between total mercury (Hg) concentration and stable nitrogen isotope ratio (δ15N) were evaluated in Mullus barbatus barbatus and M. surmuletus from the Mediterranean Sea and M. barbatus ponticus from the Black Sea. Mercury concentration in fish muscle was six times higher in the two Mediterranean species than in the Black Sea one for similar sized animals. A positive correlation between Hg concentration and δ15N occurred in all species. Increase in Hg concentration with δ15N was high and similar in the two Mediterranean fishes and much lower in the Black Sea species. Since this was neither related to trophic level difference between species nor to methylmercury (MeHg) concentration differences between the north-western Mediterranean and the Black Sea waters, we suggested that the higher primary production of the Black Sea induced a dilution of MeHg concentration at the base of the food webs.  相似文献   
27.
Many marine ecosystems exhibit a characteristic “wasp-waist” structure, where a single species, or at most several species, of small planktivorous fishes entirely dominate their trophic level. These species have complex life histories that result in radical variability that may propagate to both higher and lower trophic levels of the ecosystem. In addition, these populations have two key attributes: (1) they represent the lowest trophic level that is mobile, so they are capable of relocating their area of operation according to their own internal dynamics; (2) they may prey upon the early life stages of their predators, forming an unstable feedback loop in the trophic system that may, for example, precipitate abrupt regime shifts. Experience with the typical “boom-bust” dynamics of this type of population, and with populations that interact trophically with them, suggests a “predator pit” type of dynamics. This features a refuge from predation when abundance is very low, very destructive predation between an abundance level sufficient to attract interest from predators and an abundance level sufficient to satiate available predators, and, as abundance increases beyond this satiation point, decreasing specific predation mortality and population breakout. A simple formalism is developed to describe these dynamics. Examples of its application include (a) a hypothetical mechanism for progressive geographical habitat expansion at high biomass, (b) an explanation for the out-of-phase alternations of abundances of anchovies and sardines in many regional systems that appear to occur without substantial adverse interactions between the two species groups, and (c) an account of an interaction of environmental processes and fishery exploitation that caused a regime shift. The last is the example of the Baltic Sea, where the cod resource collapsed in concert with establishment of dominance of that ecosystem by the cod’s ‘wasp-waist” prey, herring and sprat.  相似文献   
28.
Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970–75) and after (1978–84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.  相似文献   
29.
Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska (Oncorhynchus spp.) cluster into three groups: chinook salmon (O. tshawytscha) have the highest values, followed by coho (O. kisutch), with chum (O. keta), sockeye (O. nerka), and pink (O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C (R2=0.98) and δ15N (R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966–1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ˜3‰ from 1969–1982 and an increasing trend of ˜3‰ from 1982–1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change in the North Pacific and its relation to climatic change.  相似文献   
30.
The trophic status classification of coastal waters at the European scale requires the availability of harmonised indicators and procedures. The composite trophic status index (TRIX) provides useful metrics for the assessment of the trophic status of coastal waters. It was originally developed for Italian coastal waters and then applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black and Northern seas). The TRIX index does not fulfil the classification procedure suggested by the WFD for two reasons: (a) it is based on an absolute trophic scale without any normalization to type-specific reference conditions; (b) it makes an ex ante aggregation of biological (Chl-a) and physico-chemical (oxygen, nutrients) quality elements, instead of an ex post integration of separate evaluations of biological and subsequent chemical quality elements. A revisitation of the TRIX index in the light of the European Water Framework Directive (WFD, 2000/60/EC) and new TRIX derived tools are presented in this paper. A number of Italian coastal sites were grouped into different types based on a thorough analysis of their hydro-morphological conditions, and type-specific reference sites were selected. Unscaled TRIX values (UNTRIX) for reference and impacted sites have been calculated and two alternative UNTRIX-based classification procedures are discussed. The proposed procedures, to be validated on a broader scale, provide users with simple tools that give an integrated view of nutrient enrichment and its effects on algal biomass (Chl-a) and on oxygen levels. This trophic evaluation along with phytoplankton indicator species and algal blooms contribute to the comprehensive assessment of phytoplankton, one of the biological quality elements in coastal waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号