This study investigates total petroleum hydrocarbon (TPH) removal from residual clayey soil, after a washing procedure, using an electrokinetic process. Eight electrokinetic experiments were carried out to investigate the characteristics of TPH removal. When 0.1 M MgSO4 or 0.1 M NaOH was used as an electrolyte, the electric current rapidly increased within the first 100 or 200 h, respectively. A negatively charged soil surface resulted in a more negative zeta potential and greater electroosmotic flow toward the cathode. Therefore, the accumulated electroosmotic flow (EOF) when using 0.1 M NaOH as the anolyte‐purging solution was higher than when using 0.1 M MgSO4. Although the energy consumption for the two purging solutions was similar, the efficiencies of TPH removal when 0.1 M MgSO4 and 0.1 M NaOH with surfactant were used were 0 and 39%, respectively, because the electroosmotic flow rate increased with TPH removal efficiency. When 5% isopropyl alcohol (IPA) was used as a circulation solution, the electric current increased but the TPH removal was similar to that using water. In terms of energy consumption, the use of a surfactant‐enhanced electrokinetic process with NaOH as electrolyte was effective in removing TPHs from low‐permeability soil. 相似文献
Deficient management of cinnabar mining left the San Joaquín region with high concentrations of mercury in its soils (2.4 – 4164 mg kg-1). Numerous cinnabar mines have contributed to the dispersion of mercury into agricultural (0.5 –314 mg kg-1) and forest (0.2 – 69 mg kg-1) soils. Sediments are a natural means of transportation for mercury, causing its spreading, especially in areas near mine entrances (0.6 – 687 mg kg-1). The nearness of maize crops to mines favors mercury accumulation in the different plant structures, such as roots, stems, leaves, and grain (0.04 – 8.2 mg kg-1); these being related to mercury volatilization and accumulation in soils. Mercury vapor present in the settlements could indicate a constant volatilization from lands and soils (22 – 153 ng m-3). The mercury levels found in the soils, in maize grain, and in the air resulted greater than the standards reported by the Official Mexican Norm (NOM) and the World Health Organization (WHO). Mercury in rainwater is due mainly to the presence of suspended atmospheric particles, later deposited on the surface (1.5 – 339 μg |-1). Mercury dissolution was found in the drinking water (10 – 170 ng |-1), with concentrations below those established by the NOM and the WHO. The contamination existing in the San Joaquín region does not reach the levels of the world’s greatest mercury producers: Almaden (Spain) and Idrija (Slovenia). It is, however, like that found in other important second degree world producers such as Guizhou (China). The population of San Joaquín, as well as its surrounding environment, are constantly exposed to mercury contamination, thus making a long term monitoring necessary to determine its effects, especially to people. 相似文献
This paper is concerned with the parameters of shock-acoustic waves (SAW) generated during rocket launchings. We have developed the interferometric method for determining SAW parameters (including angular characteristics of the wave vector, and the SAW phase velocity, as well as the direction towards the source) using GPS-arrays. Contrary to the conventional radio-probing techniques, the proposed method provides an estimate of SAW parameters without a priori information about the site and time of a rocket launching. The application of the method is illustrated by a case study of ionospheric effects from launchings of rockets PROTON, SOYUZ and SPACE SHUTTLE from Baikonur and Kennedy Space Center cosmodromes in 1998–2000. In spite of a difference of rocket characteristics, the ionospheric response for all launchings had the character of an N-wave corresponding to the form of a shock wave. The SAW period T is 270–360 s, and the amplitude exceeds the standard deviation of total electron content background fluctuations in this range of periods under quiet and moderate geomagnetic conditions by factors of 2–5 as a minimum. The angle of elevation of the SAW wave vector varies from 30° to 60°, and the SAW phase velocity (900–1200 m/s) approaches the sound velocity at heights of the ionospheric F-region maximum. The position of the SAW source, inferred by neglecting refraction corrections, corresponds to the segment of the rockets path at a distance no less than 200–900 km from the launch pad, and to the rocket flying altitude no less than 100 km. Our data are consistent with the existing view that SAW are generated during a nearly horizontal flight of the rocket with its engine in operation in the acceleration segment of the path at 100–130 km altitudes in the lower atmosphere. 相似文献