首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2392篇
  免费   220篇
  国内免费   202篇
测绘学   180篇
大气科学   272篇
地球物理   438篇
地质学   681篇
海洋学   229篇
天文学   566篇
综合类   72篇
自然地理   376篇
  2024年   4篇
  2023年   11篇
  2022年   43篇
  2021年   41篇
  2020年   62篇
  2019年   69篇
  2018年   50篇
  2017年   98篇
  2016年   76篇
  2015年   76篇
  2014年   99篇
  2013年   156篇
  2012年   100篇
  2011年   80篇
  2010年   100篇
  2009年   159篇
  2008年   143篇
  2007年   200篇
  2006年   182篇
  2005年   112篇
  2004年   137篇
  2003年   114篇
  2002年   94篇
  2001年   92篇
  2000年   69篇
  1999年   68篇
  1998年   68篇
  1997年   47篇
  1996年   50篇
  1995年   30篇
  1994年   36篇
  1993年   26篇
  1992年   17篇
  1991年   15篇
  1990年   12篇
  1989年   18篇
  1988年   7篇
  1987年   15篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   6篇
  1976年   2篇
排序方式: 共有2814条查询结果,搜索用时 343 毫秒
941.
942.
The anthropogenic impact on karst in Papua New Guinea is briefly introduced and a specific case is presented detailing the effect of road erosion sediments on a small karst. The karst is in the perennially humid tropics and covered with primary rain forest. The road was placed high above the karst on steep friable rock and traverses several of its catchments. The changes to and the rate of burial of parts of the karst and the infilling of the caves are described. The karst drainage has altered, and there is increased water storage. The sediment build-up ceased in less than a year due to vegetation and stabilization of the road embankments. It is concluded that any construction within a catchment leading to a karst should be assessed as to its impact on the karst.  相似文献   
943.
The techniques used for the numerical computation of families of periodic orbits of dynamical systems rely on predictor-corrector algorithms. These algorithms usually depend on the solution of systems of approximate equations constructed from the periodicity conditions of these orbits. In this contribution we transform the root finding procedure to an optimization one which is applied on an objective function based on the exact periodicity conditions. Thus, the determination of periodic solutions and families of such orbits can be accomplished through unconstrained optimization. In this paper we apply and compare some well-known minimization methods for the solution of this problem. The obtained results are promising. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
944.
Planets orbiting a planetesimal circumstellar disc can migrate inward from their initial positions because of dynamical friction between planets and planetesimals. The migration rate depends on the disc mass and on its time evolution. Planets that are embedded in long-lived planetesimal discs, having total mass of 10−4– 0.01 M , can migrate inward a large distance and can survive only if the inner disc is truncated or as a result of tidal interaction with the star. In this case the semimajor axis, a , of the planetary orbit is less than 0.1 au. Orbits with larger a are obtained for smaller values of the disc mass or for a rapid evolution (depletion) of the disc. This model may explain not only several of the orbital features of the giant planets that have been discovered in recent years orbiting nearby stars, but also the metallicity enhancement found in several stars associated with short-period planets.  相似文献   
945.
Following Papadakis (2005)'s numerical exploration of the Chermnykh's problem, we here study a Chermnykh-like problem motivated by the astrophysical applications. We find that both the equilibrium points and solution curves become quite different from the ones of the classical planar restricted three-body problem. In addition to the usual Lagrangian points, there are new equilibrium points in our system. We also calculate the Lyapunov Exponents for some example orbits. We conclude that it seems there are more chaotic orbits for the system when there is a belt to interact with.  相似文献   
946.
We present an improved method for locating periodic orbits of a dynamical system of arbitrary dimension. The method first employs the characteristic bisection method (CBM) to roughly locate a periodic orbit, followed by the quadratically convergent Newton method to rapidly refine its position. The method is applied to the physically interesting example of the two degrees of freedom photogravitational problem, and shown to surpass the CBM algorithm and Newton's method alone.  相似文献   
947.
In this paper we develop further the model for the migration of planets introduced in Del Popolo et al. We first model the protoplanetary nebula as a time-dependent accretion disc, and find self-similar solutions to the equations of the accretion disc that give us explicit formulae for the spatial structure and the temporal evolution of the nebula. These equations are then used to obtain the migration rate of the planet in the planetesimal disc, and to study how the migration rate depends on the disc mass, on its time evolution and on some values of the dimensionless viscosity parameter α . We find that planets that are embedded in planetesimal discs, having total mass of  10-4-0.1 M  , can migrate inward a large distance for low values of α (e.g.,   α ≃10-3-10-2)  and/or large disc mass, and can survive only if the inner disc is truncated or because of tidal interaction with the star. Orbits with larger a are obtained for smaller values of the disc mass and/or for larger values of α . This model may explain several orbital features of the recently discovered giant planets orbiting nearby stars.  相似文献   
948.
When constructing diagnostic systems or using knowledge-based systems,e.g.in analytical chemistry,features of different type and character,represented by numbers,trajectories or linguistic variables suchas intensities or colours,must be considered.To find neighbourhoods or to fill in missing values,thenotion of similarity is of essential importance.The paper presents a new fuzzy-set-theory-based approachto quantifying similarity and provides a system of rules to be implemented into the diagnostic part of theknowledge base to be used.  相似文献   
949.
I examine the implications of the recently found extrasolar planets on the planet-induced axisymmetric mass-loss model for the formation of elliptical planetary nebulae (PNe). This model attributes the low departure from spherical mass-loss of upper asymptotic giant branch (AGB) stars to envelope rotation which results from deposition of orbital angular momentum of the planets. Since about half of all PNe are elliptical, i.e., have low equatorial to polar density contrast, it was predicted that about 50 per cent of all Sun-like stars have Jupiter-like planets around them, i.e., a mass about equal to that of Jupiter, M J, or more massive. In the light of the new findings that only 5 per cent of Sun-like stars have such planets, and a newly proposed mechanism for axisymmetric mass-loss, the cool magnetic spots model, I revise this prediction. I predict that indeed ∼50 per cent of PN progenitors do have close planets around them, but the planets can have much lower masses, as low as ∼0.01 M J, in order to spin-up the envelopes of AGB stars efficiently. To support this claim, I follow the angular momentum evolution of single stars with main-sequence mass in the range of 1.3–2.4 M , as they evolve to the post-AGB phase. I find that single stars rotate much too slowly to possess any significant non-spherical mass-loss as they reach the upper AGB. It seems, therefore, that planets, in some cases even Earth-like planets, are sufficient to spin-up the envelope of these AGB stars for them to form elliptical PNe. The prediction that on average several such planets orbit each star, as in the Solar system, still holds.  相似文献   
950.
A mapping which reflects the properties of the Sitnikov problem is derived. We study the mapping instead of the original differential equations and discover that there exists a hyperbolic invariant set. The theoretical prediction of the disorder region agrees remarkably with numerical results. We also discuss the LCEs and KS-entropy of the dynamical system.This project is supported by the National Science Foundation of China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号