We present new and reprocessed seismic reflection data from the area where the southeast and southwest Greenland margins intersected to form a triple junction south of Greenland in the early Tertiary. During breakup at 56 Ma, thick igneous crust was accreted along the entire 1300-km-long southeast Greenland margin from the Greenland Iceland Ridge to, and possibly 100 km beyond, the triple junction into the Labrador Sea. However, highly extended and thin crust 250 km to the west of the triple junction suggests that magmatically starved crustal formation occurred on the southwest Greenland margin at the same time. Thus, a transition from a volcanic to a non-volcanic margin over only 100–200 km is observed. Magmatism related to the impact of the Iceland plume below the North Atlantic around 61 Ma is known from central-west and southeast Greenland. The new seismic data also suggest the presence of a small volcanic plateau of similar age close to the triple junction. The extent of initial plume-related volcanism inferred from these observations is explained by a model of lateral flow of plume material that is guided by relief at the base of the lithosphere. Plume mantle is channelled to great distances provided that significant melting does not take place. Melting causes cooling and dehydration of the plume mantle. The associated viscosity increase acts against lateral flow and restricts plume material to its point of entry into an actively spreading rift. We further suggest that thick Archaean lithosphere blocked direct flow of plume material into the magma-starved southwest Greenland margin while the plume was free to flow into the central west and east Greenland margins. The model is consistent with a plume layer that is only moderately hotter, 100–200°C, than ambient mantle temperature, and has a thickness comparable to lithospheric thickness variations, 50–100 km. Lithospheric architecture, the timing of continental rifting and viscosity changes due to melting of the plume material are therefore critical parameters for understanding the distribution of magmatism. 相似文献
Several large deployments of neutrally buoyant floats took place within the Antarctic Intermediate (AAIW), North Atlantic Deep Water (NADW), and the Antarctic Bottom Water (AABW) of the South Atlantic in the 1990s and a number of hydrographic sections were occupied as well. Here we use the spatially and temporally averaged velocities measured by these floats, combined with the hydrographic section data and various estimates of regional current transports from moored current meter arrays, to determine the circulation of the three major subthermocline water masses in a zonal strip across the South Atlantic between the latitudes of 19°S and 30°S. We concentrate on this region because the historical literature suggests that it is where the Deep Western Boundary Current containing NADW bifurcates. In support of this notion, we find that a net of about 5 Sv. of the 15–20 Sv that crosses 19°S does continue zonally eastward at least as far as the Mid-Atlantic Ridge. Once across the ridge it takes a circuit to the north along the ridge flanks before returning to the south in the eastern half of the Angola Basin. The data suggest that the NADW then continues on into the Indian Ocean. This scheme is discussed in the context of distributions of dissolved oxygen, silicate and salinity. In spite of the many float-years of data that were collected in the region a surprising result is that their impact on the computed solutions is quite modest. Although the focus is on the NADW we also discuss the circulation for the AAIW and AABW layers. 相似文献
Identification of the distinctive circulation patterns of storminess on the Atlantic margin of Europe forms the main objective of this study; dealing with storm frequency, intensity and tracking. The climatology of the extratropical cyclones that affect this region has been examined for the period 1940–1998. Coastal meteorological data from Ireland to Spain have been linked to the cyclone history for the North Atlantic in the analysis of storm records for European coasts. The study examines the evolution in the occurrence of storms since the 1940s and also their relationship with the North Atlantic Oscillation (NAO). Results indicate a seasonal shift in the wind climate, with regionally more severe winters and calmer summers established. This pattern appears to be linked to a northward displacement in the main North Atlantic cyclone track.
An experiment with the ECHAM4 A-GCM at high resolution (T106) has also been used to model the effect of a greenhouse gases induced warming climate on the climatology of coastal storms in the region. The experiment consists of (1), a 30-year control time-slice representing present-day equivalent CO2 concentrations and (2), a 30-year perturbed period corresponding to a time when the radiative forcing has doubled in terms of equivalent CO2 concentrations. The boundary conditions have been obtained from an atmosphere-ocean coupled OA-GCM simulation at low horizontal resolution. An algorithm was developed to allow the identification of individual cyclone movements in selected coastal zones. For most of the northern part of the study region, covering Ireland and Scotland, results describe the establishment by ca. 2060 of a tendency for fewer but more intense storms.
The impacts of these changes in storminess for the vulnerability of European Atlantic coasts are considered. For low-lying, exposed and ‘soft’ sedimentary coasts, as in Ireland, these changes in storminess are likely to result in significant localised increases in coastal erosion. 相似文献
We study the reaction of a global ocean–sea ice model to an increase of fresh water input into the northern North Atlantic under different surface boundary conditions, ranging from simple restoring of surface salinity to the use of an energy balance model (EBM) for the atmosphere. The anomalous fresh water flux is distributed around Greenland, reflecting increased melting of the Greenland ice sheet and increasing fresh water export from the Arctic Ocean. Depending on the type of surface boundary condition, the large circulation reacts with a slow-down of overturning and gyre circulations. Restoring of the total or mean surface salinity prevents a large scale redistribution of the salinity field that is apparent under mixed boundary conditions and with the EBM. The control run under mixed boundary conditions exhibits large and unrealistic oscillations of the meridional overturning. Although the reaction to the fresh water flux anomaly is similar to the response with the EBM, mixed boundary conditions must thus be considered unreliable. With the EBM, the waters in the deep western boundary current initially become saltier and a new fresh water mass forms in the north-eastern North Atlantic in response to the fresh water flux anomaly around Greenland. After an accumulation period of several decades duration, this new North East Atlantic Intermediate Water spreads towards the western boundary and opens a new southward pathway at intermediate depths along the western boundary for the fresh waters of high northern latitudes. 相似文献
Analysis of Argo float trajectories at 1 000 m and temperature at 950 m in the North Atlantic between November 2003 and January 2005 demonstrates the existence of two different circulation modes with fast transition between them. Each mode has a pair of cyclonic - anticyclonic gyres. The difference is the location of the cyclonic gyre. The cyclonic gyre stretches from southeast to northwest in the first mode and from the southwest to the northeast in the second mode. The observed modes strongly affect the heat and salt transport in the North Atlantic. In particular, the second mode slows down the westward transport of the warm and saline water from the Mediterranean Sea. 相似文献