首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   19篇
  国内免费   60篇
测绘学   2篇
地球物理   69篇
地质学   271篇
海洋学   22篇
天文学   74篇
自然地理   23篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   25篇
  2013年   24篇
  2012年   16篇
  2011年   22篇
  2010年   20篇
  2009年   33篇
  2008年   31篇
  2007年   23篇
  2006年   27篇
  2005年   34篇
  2004年   23篇
  2003年   24篇
  2002年   28篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1995年   3篇
  1994年   6篇
  1993年   9篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1980年   1篇
  1979年   9篇
  1977年   7篇
排序方式: 共有461条查询结果,搜索用时 15 毫秒
61.
Large-scale, low-gradient ancient landslides estimated at 5.4–18.9 km2 in area and  0.2–1.2 km3 in volume have been studied in the northern hilly periphery of the Crimean Mountains (Ukraine). They originated on slopes along wide water gaps of rivers (Belbek, Kacha, Alma and Biyuk–Karasu) crossing the cuestas of the northern foothills. The slopes generally consist of slightly northward tilting Miocene (mainly Sarmatian) limestones overlying weak, clay-rich Lower Neogene–Palaeogene substratum with a significant content of smectite. Although the region is characterised by the least active contemporary morphodynamics within the Crimean Mountains, the landslides which were studied are of the same size or even larger than various types of landslides occupying active geomorphic domains of the highest mountain range in the southernmost part of the peninsula. The landslides are generally a spreading type, but the sliding mechanics were probably very complex, involving toppling, rotational slides, gravitational folding and translational block slides. All the landslides which were studied are located in the vicinity of regional faults and three of them have headscarps aligned along faults. A common feature is also a location close (within several km) to the Mesozoic suture zone which is the most important tectonic feature in the northern periphery of the Crimean Orogene. This suture was formerly classified as aseismic; however, evidence of strong, low-frequency palaeoearthquakes was collected during the last decade within both the Mesozoic suture and the low-lying northern part of the Crimean Peninsula. Radiocarbon dating of deposits associated with the landslides has revealed at least two phases of increased landslide-activity during the Late Glacial chronozone and Holocene epoch. The main landslide phase presumably took place at some time between the Late Glacial and Atlantic chronozones. Minor reactivation of landslide toes occurred during the Subatlantic chronozone and some of them have been active up to recent times. The first major landslide phase was possibly triggered by an earthquake, whereas late Holocene activity can be attributed both to seismic and hydroclimatic factors.  相似文献   
62.
Over the last decade there have been significant advances in our understanding of the stratigraphy, magmatism, deformation, metamorphism and timing of mineralisation, in the eastern Yilgarn Craton (EYC) of Western Australia. The integration of these disciplines has enabled a holistic review of the tectonic history of the EYC which favours a paraautochthonous tectonic model.  相似文献   
63.
Straddling the south polar region of Saturn's moon Enceladus, the four principal “tiger stripe” fractures are a likely source of tectonic activity and plume generation. Here we investigate tidally driven stress conditions at the tiger stripe fractures through a combined analysis of shear and normal diurnal tidal stresses and accounting for additional stress at depth due to the overburden pressure. We compute Coulomb failure conditions to assess failure location, timing, and direction (right- vs left-lateral slip) throughout the Enceladus orbital cycle and explore a suite of model parameters that inhibit or promote shear failure at the tiger stripes. We find that low coefficients of friction (μf=0.1-0.2) and shallow overburden depths (z=2-4 km) permit shear failure along the tiger stripe faults, and that right- and/or left-lateral slip responses are possible. We integrate these conditions into a 3D time-dependent fault dislocation model to evaluate tectonic displacements and stress variations at depth during a tiger stripe orbital cycle. Depending on the sequence of stress accumulation and subsequent fault slip, which varies as a function of fault location and orientation, frictional coefficient, and fault depth, we estimate resolved shear stress accumulation of ∼70 kPa prior to fault failure, which produces modeled strike-slip displacements on the order of ∼0.5 m in the horizontal direction and ∼5 mm in the vertical direction per slip event. Our models also indicate that net displacements on the order of 0.1 m per orbital cycle, in both right- and left-lateral directions, are possible for particular fault geometries and frictional parameters. Tectonic activity inferred from these analyses correlates with observed plume activity and temperature anomalies at Enceladus's south polar region. Moreover, these analyses provide important details of stress accumulation and the faulting cycle for icy satellites subjected to diurnal tidal stress.  相似文献   
64.
Several approaches have been used to estimate the ice shell thickness on Callisto, Ganymede, and Europa. Here we develop a method for placing a strict lower bound on the thickness of the strong part of the shell (lithosphere) using measurements of topography. The minimal assumptions are that the strength of faults in the brittle lithosphere is controlled by lithostatic pressure according to Byerlee's law and the shell has relatively uniform density and thickness. Under these conditions, the topography of the ice provides a direct measure of the bending moment in the lithosphere. This topographic bending moment must be less than the saturation bending moment of the yield strength envelope derived from Byerlee's law. The model predicts that the topographic amplitude spectrum decreases as the square of the topographic wavelength. This explains why Europa is rugged at shorter wavelengths (∼10 km) but extremely smooth, and perhaps conforming to an equipotential surface, at longer wavelengths (>100 km). Previously compiled data on impact crater depth and diameter [Schenk, P.M., 2002. Nature 417, 419-421] on Europa show good agreement with the spectral decrease predicted by the model and require a lithosphere thicker than 2.5 km. A more realistic model, including a ductile lower lithosphere, requires a thickness greater than 3.5 km. Future measurements of topography in the 10-100 km wavelength band will provide tight constraints on lithospheric strength.  相似文献   
65.
Application of dendrochronology and geomorphology to a recently emerged coastal area near Juneau, Alaska, has documented a Little Ice Age (LIA) sea-level transgression to 6.2 m above current sea level. The rise in relative sea level is attributed to regional subsidence and appears to have stabilized by the mid 16th century, based on a sea-cliff eroded into late-Pleistocene glaciomarine sediments. Land began emerging between A.D. 1770 and 1790, coincident with retreat of regional glaciers from their LIA maximums. This emergence has continued since then, paralleling regional glacier retreat. Total Juneau uplift since the late 18th century is estimated to be 3.2 m. The rate of downward colonization of newly emergent coastline by Sitka spruce during the 20th century closely parallels the rate of sea-level fall documented by analysis of local tide-gauge records (1.3 cm/yr). Regional and Glacier Bay LIA loading and unloading are inferred to be the primary mechanisms driving subsidence and uplift in the Juneau area. Climate change rather then regional tectonics has forced relative sea-level change over the last several hundred years.  相似文献   
66.
In this paper we tested the applicability of the Optically Stimulated Luminescence (OSL) technique through Single-Aliquot Regenerative-dose (SAR) protocol, on single grain quartz extracted from alluvial–coastal sediments. Five samples were collected from deposits belonging to a flight of seven orders of coastal–alluvial terraces outcropping in the area between Mt. Etna volcano and the Catania Plain (Sicily, southern Italy), at the front of the Sicilian fold and thrust system. After various performance tests, we obtained OSL ages ranging between 240 ± 12 and 80 ± 4 ka, consistent with the normal evolutionary model of a terraced sequence, moving from the highest to the lowest elevation. Obtained data allowed us to determine a mean uplift rate of 1.2 mm/year during the last 240 ka, mostly related to regional uplift processes coupled with sea-level changes. Moreover, terraces belonging to the two highest orders are folded, forming a large anticline. According to our results, the frontal thrust of the Sicilian chain was active between 236 and 197 ka ago, even though seismological and geodetic data suggest current activity to the back.  相似文献   
67.
In order to study the ongoing tectonic deformation in the Rhine Graben area, we reconstruct the local crustal velocity and the strain rate field from GPS array solutions. Following the aim of this work, we compile the velocities of permanent GPS stations belonging to various networks (EUREF, AGNES, REGAL and RGP) in central western Europe. Moreover, the strain rate field is displayed in terms of principal axes and values, while the normal and the shear components of the strain tensor are calculated perpendicular and parallel to the strike of major faults. The results are compared with the fault plane solutions of earthquakes, which have occurred in this area. A broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations. The area of study is divided into four rigid blocks, between which there might be relative motions. The velocity and the strain rate fields are reconstructed along their borders, by estimating a uniform rotation for each block. The tectonic behaviour is well represented by the four-block model in the Rhine Graben area, while a more detailed model will be needed for a better reconstruction of the strain field in the Alpine region.
Magdala TesauroEmail:
  相似文献   
68.
A fundamental geological tenet is that as landscapes evolve over graded to geologic time, geologic structures control patterns of topographic distribution in mountainous areas such that terrain underlain by competent rock will be higher than terrain underlain by incompetent rock. This paper shows that in active orogens where markedly weak and markedly strong rocks are juxtaposed along contacts that parallel regional structures, relatively high topography can form where strain is localized in the weak rock. Such a relationship is illustrated by the topography of the central Coast Ranges between the Pacific coastline and the San Andreas fault zone (SAFZ), and along the length of the Gabilan Mesa (the “Gabilan Mesa segment” of the central Coast Ranges). Within the Gabilan Mesa segment, the granitic upper crust of the Salinian terrane is in contact with the accretionary-prism mélange upper crust of the Nacimiento terrane along the inactive Nacimiento fault zone. A prominent topographic lineament is present along most of this lithologic boundary, approximately 50 to 65 km southwest of the SAFZ, with the higher topography formed in the mélange on the southwest side of the Nacimiento fault.This paper investigates factors influencing the pattern of topographic development in the Gabilan Mesa segment of the central Coast Ranges by correlating shortening magnitude with the upper-crust compositions of the Salinian and Nacimiento terranes. The fluvial geomorphology of two valleys in the Gabilan Mesa, which is within the Salinian terrane, and alluvial geochronology based on optically-stimulated luminescence (OSL) age estimates, reveal that the magnitude of shortening accommodated by down-to-the-southwest tilting of the mesa since 400 ka is less than 1 to 2 m. Our results, combined with those of previous studies, indicate that at least 63% to 78% of late-Cenozoic, northeast-southwest directed, upper-crustal shortening across the Gabilan Mesa segment has been accommodated within the Nacimiento terrane. This is significant because perpendicular to orogenic strike the Nacimiento terrane constitutes less than ¼ of the distance between the coast and the SAFZ, and the other ¾ (or greater) of the distance between the coast and the SAFZ is underlain by the granitic upper crust of the Salinian terrane. We propose that strain and mountain building are localized within the Nacimiento terrane because it consists predominantly of the relatively weak Franciscan Complex mélange, and because the upper crust of the Salinian terrane is composed of relatively strong granitic rocks. Our hypothesis is supported by the distribution of post-seismic surface uplift associated with the 2003, 6.5 MW San Simeon earthquake, which mimics the topography of the southwestern part of the Gabilan Mesa segment of the central Coast Ranges.  相似文献   
69.
Distinct competent layers are observed in the slopes of eastern Coprates Chasma, part of the Valles Marineris system on Mars. Our observations indicate that the stratigraphy of Coprates Chasma consists of alternating thin strong layers and thicker sequences of relatively weak layers. The strong, competent layers maintain steeper slopes and play a major role in controlling the overall shape and geomorphology of the chasmata slopes. The topmost competent layer in this area is well preserved and easy to identify in outcrops on the northern rim of Coprates Chasma less than 100 m below the southern Ophir Planum surface. The volume of the topmost emplaced layer is at least 70 km3 and may be greater than 2100 km3 if the unit underlies most of Ophir Planum. The broad extent of this layer allows us to measure elevation offsets within the north rim of the chasma and in a freestanding massif within Coprates Chasma where the layer is also observed. Rim outcrop morphology and elevation differences between Ophir and Aurorae Plana may be indicative of the easternmost extent of the topmost competent layer. These observations allow an insight into the depositional processes that formed the stratigraphic stack into which this portion of the Valles Marineris is carved, and they present a picture of some of the last volcanic activity in this area. Furthermore, the elevation offsets within the layer are evidence of significant subsidence of the massif and surrounding material.  相似文献   
70.
Amy C. Barr  Lauren J. Preuss 《Icarus》2010,208(1):499-503
Recent high-resolution Cassini images of the south polar terrain of Enceladus reveal regions of short-wavelength deformation, inferred to be compressional folds between the Baghdad and Damascus tiger stripes (Spencer, J.R., Barr, A.C., Esposito, L.W., Helfenstein, P., Ingersoll, A.P., Jaumann, R., McKay, C.P., Nimmo, F., Waite, J.H. [2009a]. Enceladus: An active cryovolcanic satellite. In: Saturn after Cassini-Huygens. Springer, New York, pp. 683-722). Here, we use Fourier analysis of the bright/dark variations to show that the folds have a dominant wavelength of 1.1 ± 0.4 km. We use the simple model of lava flow folding from Fink (Fink, J. [1980]. Geology 8, 250-254) to show that the folds could form in an ice shell with an upper high-viscosity boundary layer of thickness <400 m, with a driving stress of 40-80 kPa, and strain rate between 10−14 s−1 and 10−12 s−1. Such deformation rates imply resurfacing of the SPT in 0.05-5 Myr, consistent with its estimated surface age. Measurements of fold topography and more sophisticated numerical modeling can narrow down the conditions of fold formation and provide valuable constraints on the thermal structure of the ice shell on Enceladus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号