首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   31篇
  国内免费   4篇
测绘学   8篇
大气科学   9篇
地球物理   171篇
地质学   36篇
海洋学   33篇
天文学   34篇
综合类   1篇
自然地理   39篇
  2024年   1篇
  2022年   2篇
  2021年   12篇
  2020年   18篇
  2019年   11篇
  2018年   10篇
  2017年   12篇
  2016年   13篇
  2015年   10篇
  2014年   8篇
  2013年   41篇
  2012年   5篇
  2011年   16篇
  2010年   2篇
  2009年   13篇
  2008年   23篇
  2007年   13篇
  2006年   16篇
  2005年   17篇
  2004年   13篇
  2003年   10篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   10篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有331条查询结果,搜索用时 0 毫秒
191.
Bedload pulses in gravel-bed rivers have been widely reported in recent years and attempts have been made to relate them to channel morphology. Bedload transport and channel morphology were measured in a small-scale generic model of braided gravel-bed streams. Two experiments are described in which braided channels developed in a 14 m × 3 m sand tray. Total bedload output from the tray was weighed every 15 minutes. Stream bed geometry was surveyed every four hours. Pulses were observed in the bedload output time series, and were qualitatively related to the channel morphology immediately upstream of the measuring section. The Bagnold (1980) bedload equation generally overpredicts measured bedload transport rates when applied to channels that were in equilibrium or aggrading. Underprediction occurred when applied to degrading channels. Aggradation was associated with channel multiplication and bar deposition. Channel pattern simplification occurred when degradation took place, and bars emerged from the water flow. Development of phases of aggradation and degradation is dependent upon the three-dimensional geometry of the stream beds. Spatial and temporal feedback loops can be identified, enabling links between channel morphology and bedload transport rate to be directly identified.  相似文献   
192.
Rills are generated on homogeneous hillslopes by the action of different discharges and evolve morphologically over short timescales due to a strong interaction between the flow and bed morphology. Such an interaction generates a reconfiguration of the bed geometry. Previous works suggest that bed geometry is often characterized by alternation between pools and flat reaches (steps). Each step–pool unit may contribute to hydraulic resistance and affects flow behaviour. The objectives of this work are (i) to assess different (innovative) techniques for the in-situ assessment of rill bed geometry, (ii) to use these techniques to assess the geometry of eroded rills in situ in order to determine the spatial arrangement in the bed macro-scale roughness and (iii) finally to analyse the role of slope and discharge as driving factors associated with the development of these macroforms. Roughly rectilinear, long rills were formed in the field as a result of combining different slope and discharges. Photogrammetry provided detailed digital elevation models (DEMs) before and after the experiments. The rills were morphologically characterized from the DEMs. In each rill, the presence of step–pools was identified from long profiles according mainly to morphological criteria published elsewhere, but with ad hoc critical threshold values more appropriate for small eroded channels. The minimum slope required for the development of step–pool units seems to be somewhere between 5 and 15%. Discharge seems to affect pool size or roughness amplitude. There does not seem to be a clear step–pool periodicity. However, external factors could have affected the normal growth and alternation of these structures. Identification of steps and pools from longitudinal elevation profiles can be objectively accomplished using a series of geometric rules originally proposed for rivers and large channels, and adapted to rills. © 2019 John Wiley & Sons, Ltd.  相似文献   
193.
Nesameletidae is a Southern Hemisphere ephemeropteran family with large-bodied nymphs that are swimming grazers, traits that make aquatic invertebrates vulnerable to visual predators. Metamonius anceps is the sole representative of this family in South America and its present known distribution along the Southern Andes is mostly restricted to headwater streams, usually with clear and well-oxygenated waters.We analyzed their spatial distribution in relation to the presence of the exotic predator rainbow trout (Oncorhynchus mykiss), which is the only fish species in many small Andean Patagonia streams. We measured mayfly abundance in the benthos and drift in reaches with and without fish (the latter being reaches upstream of waterfalls that prevent trout access) in three catchments of Nahuel Huapi Lake basin at the Nahuel Huapi National Park, Argentina. We compared nymphal abundance and body size at the habitat scale and at the reach scale, and nymphal presence and body size in trout diet.A multivariate analysis of physical stream features showed that habitat/reaches with and without fish had similar abiotic characteristics. In no fish sites, nymph density ranged between 44 and 180 m−2 while in fish sites they were 0–3 m−2. In one stream nymphs drifted mainly during the day and ∼400 indiv. day−1 were estimated to enter the site with fish. However no nymphs were collected drifting 200 m below the waterfall (the reach with fish). Observations on the diet of rainbow trout also supported the ongoing strong interaction between this mayfly and the trout. M. anceps is a highly vulnerable prey as no permanent populations were found in study reaches with the exotic predator established. Our study emphasizes the potential of natural physical barriers to stop invasive fish having access to headwaters allowing them to harbour natural populations of the most trout-susceptible species supporting pristine ecosystem conditions.  相似文献   
194.
Macroinvertebrate communities at 16 sites in Cerová vrchovina highland were sampled in 2000–2001 to analyze the influence of environmental factors on community structure with emphasis on Ephemeroptera, Plecoptera and Trichoptera (EPT). The extreme hydrological conditions of this area determine the macroinvertebrate community structure. Totally, 16 Ephemeroptera, 8 Plecoptera and 36 Trichoptera taxa were found. Predators of the families Perlidae, Perlodidae and Chloroperlidae (Plecoptera) were absent. The record of Protonemura aestiva is the second one in Slovakia. Ephemeroptera were represented mainly by rheophilous taxa. A rare lowland species Baetis tracheatus was found, known previously just from West Slovakia. Trichoptera were mainly represented by submontane rheophilous taxa. Species preferring low currents or backwaters from the family Limnephilidae were also recorded. Altitude and dissolved oxygen content were found to be the most important environmental variables determining the EPT community structure. Six types of streams were distinguished by the results of multivariate analysis, taxonomic composition and metric values. They belong to two main types: (1) EPT communities of the natural streams and (2) EPT communities of disturbed streams, where two types of stressor were identified–organic pollution and low discharge. A similarity between EPT communities of organically polluted streams and streams with very low flow was discovered. Values of biotic indices decreased in summer. The most diversified communities were found in the spring during higher water levels and better oxygen conditions.  相似文献   
195.
M. F. Merck  B. T. Neilson 《水文研究》2012,26(25):3921-3933
This study examines the variability of in‐pool temperatures in Imnavait Creek, a beaded arctic stream consisting of small pools connected by shallow chutes, for the purpose of predicting potential impacts of climate variations on the system. To better understand heat fate and transport through this system, the dominant heat sources and sinks creating and influencing thermal stratification within even the smallest and shallowest pools must be quantified. To do this, temperature data were collected vertically within the pool water column and surrounding bed sediments during stratified conditions. These temperature and other supporting data (e.g. instream flow, weather data, and bathymetry) were used to formulate and develop an instream temperature model that captures the site‐specific processes occurring within the pools during summer low flow conditions. The model includes advective, air–water interface, and bed conduction fluxes, simplified vertical exchange between stratified pool layers, and attenuation of shortwave radiation within the water column. We present the model formulation, data collection methods used in support of model development and population, and the resulting model calibration and validation for one of the study pools. We also provide information regarding dominant heat sources and sinks and residence times of different layers within the stratified pool. We found that the dominant heat sources vary between stratified layers and that increases in thaw depths surrounding these pools due to possible climate changes can shift stratification, mixing, and instream storage dynamics, thereby influencing the fate and transport of heat and other constituents of interest (e.g. nutrients). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
196.
Urban stormwater run‐off degrades the ecological condition of streams. The use of rainwater tanks to supplement water supply can reduce the frequency and volume of urban stormwater run‐off that is otherwise conveyed directly to streams via conventional stormwater drainage systems. Few studies, however, have examined the use of tanks in the context of managing flow regimes for stream protection, with most focussed uniquely on their water conservation benefits. We used measured tank water level data to assess the performance of 12 domestic rainwater tanks against the dual criteria of their ability to (i) reduce potable mains water usage and (ii) retain run‐off from rainfall events and thus reduce the volume and frequency of stormwater run‐off. We found that five households relied almost entirely on tank water. Three of the tanks achieved stormwater retention performance approaching that of the same area of pre‐developed land, although nine did not – a consequence of limited demand and small tank capacity. Our results suggest that tank water usage can result in substantial reductions in mains water use, if regular and sufficiently large domestic demands are connected to tanks. In many cases, such demands will also result in the best stormwater retention performance. Our results highlight an opportunity to design tank systems to achieve multiple objectives. Application of similar analyses in different locations will help to optimize tanks for simultaneous water supply and stormwater retention purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
197.
Stream surface albedo plays a key role in the energy balance of rivers and streams that are exposed to direct solar radiation. Most physically based analyses and models have incorporated a constant stream albedo between 0.03 and 0.10, based primarily on measurements from low‐gradient streams with low suspended sediment concentrations. However, albedo should vary with solar elevation angle, suspended sediment concentration, aeration, and fraction of direct versus diffuse radiation. The objective of this study was to quantify the dependence of albedo of mountain streams on the controlling factors and to develop a predictive model for use in physically based analysis and modelling of stream temperature, especially for future climate and land‐use scenarios. Stream surface albedo was measured at nine sites with a variety of gradients and suspended sediment characteristics in the southern Coast Mountains of British Columbia, Canada. As expected, albedo of low‐gradient, non‐white water (flatwater) streams increased with solar elevation angle, suspended sediment concentration, and proportion of diffuse to direct solar radiation, ranging between 0.025 during cloudy periods over clear water to 0.25 for turbid water at elevation angles of less than 20°. Albedo was enhanced in steep reaches or at channel steps and cascades where flow was visibly aerated, with a range of 0.09 to 0.33. In clear weather, albedo exhibited notable diurnal variability at flatwater sampling sites. For example, during late summer, surface albedo typically fluctuated between 0.08 and 0.15 on a daily basis at a flatwater site on the highly turbid, glacier‐fed Lillooet River. Multiple regression models explained approximately 60% and 40% of the variance under cross validation for flatwater and white water data subsets, respectively, with corresponding root mean square errors of approximately 0.02 and 0.06.  相似文献   
198.
Increased erosion associated with land use change often alters the flux of sediments and nutrients, but few studies have looked at the interaction between these disrupted cycles. We studied the effects of gully erosion on carbon and nitrogen storage in surface soil/sediment and herbaceous vegetation and on C and N mineralization in a headwater catchment used for cattle grazing. We found significantly lower C and N stored in an incising gully compared with an intact valley. This storage was significantly higher in an adjacent stabilizing gully, although not to the levels found in the intact valley. The intact valley had two to four times higher soil/sediment concentrations of total organic C, total N and Colwell extractable P than the incising gully. Lower storage was not explained by differences in vegetation biomass density or silt and clay content. Vegetation accounted for only 8% of C and 2% of N storage. Although not a significant store in itself, vegetation has an important indirect role in restoring and maintaining soil/sediment C and N stocks in eroding areas. We found significant linear relationships between C and N mineralization rates and soil/sediment C and N content, with lower rates occurring in the eroded sediment. These findings support our initial hypothesis that gully erosion reduces C and N storage and mineralization rates in eroding catchments. The implications of this study include a change to the quality of eroded sediments in headwater catchments, causing C‐poorer and N‐poorer sediments to be exported but overall loads to increase. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
199.
Determining the impact of urbanisation on baseflow is complex because of the multiplicity of factors that govern subsurface flows. Although many metrics are available to quantify the baseflow regime, the lack of consensus on which metrics need to be used for baseflow characterisation limit their practical application for stormwater management. We performed principal component and correlation analyses on a set of 32 baseflow metrics to identify a subset of non‐redundant metrics for baseflow characterisation. We compared the results for streamflow time series from natural and urban catchments. We found that a subset of five metrics, including at least one metric from each of the four ecologically significant flow characteristic groups (i.e. magnitude, duration, frequency, and timing), explained most of the variability in baseflow regime for both natural and urban catchments. In addition, we analysed the relationship between this set of metrics and some low flow percentiles obtained from flow duration curves. Flow percentiles were only highly correlated to the magnitude and duration metrics, confirming that flow duration curves could be satisfactorily used for baseflow characterisation, but in combination with metrics representing frequency and timing. Metrics based on integration of the flow duration curve, however, cannot simply substitute the consideration of a suite of metrics. We discuss the practicality of our results with a regional regression study; the analyses show how the metrics can be used to quantify the alterations to baseflow caused by urbanisation, and to determine baseflow restoration objectives for urbanised catchments based on pre‐development baseflow regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
200.
Ephemeral streams are small headwater streams that only experience streamflow in response to a precipitation event. Due to their highly complex and dynamic spatial and temporal nature, ephemeral streams have been difficult to monitor and are in general poorly understood. This research implemented an extensive network of electrical resistance sensors to monitor three ephemeral streams within the same small headwater catchment in Southern Ontario, Canada. The results suggest that the most common patterns of network expansion and contraction in the studied streams are incomplete coalescence and disintegration, respectively. Binary logistic regression analysis of the primary controls on ephemeral streamflow showed only weak Nagelkerke R2 values, suggesting that there are more complex processes at work in these ephemeral streams. A comparison of all three streams suggests that even ephemeral streams within the same subwatershed may experience differences in network expansion and contraction and may be dominated by different spatial and temporal controls. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号