首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  国内免费   6篇
大气科学   1篇
地球物理   11篇
地质学   36篇
海洋学   14篇
自然地理   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有66条查询结果,搜索用时 46 毫秒
41.
Currently, sedimentologists focus on the challenging issue of microbial carbonates, which are regarded as "one of the sedimentary rocks most difficult to study", having complicated sedimentary fabric. Their characteristic features closely related to microbial activity, distributed over a long period of geological time, and formed in diversified sedimentary environments. The main research concentrations are the calcified microbial mats and biofilms in geological records as the products of lithification and diagenesis. Starting from the origin, this paper systematically reviewed and explained the processes dwelling within two types of microbial communities, the thinner biofilm and the thicker microbial mat, which enabled them to convert into microbial carbonates through biomineralization and lithification. This study proposed that the existence of multiple microbial mats was another important cause for the diversification and complexity of microbial carbonates in addition to its complex depositional process. Moreover, the sedimentary characteristics and classification of different types of microbial carbonates were reviewed, exemplifying the Cambrian microbial carbonates in the North China Platform. These microbial carbonates are suggested to be placed under "bindstone" after Embry and Kloven, which can be further divided into 5 types, stromatolites, thrombolites, oncolites, laminites and leiolites. Dendrolite is not categorized as a separate class, instead attributed to thrombolites. The microbial carbonates may possess good source rock potential because of the enriched organic content, and may also serve as hydrocarbon reservoirs because of certain microbial textures and fabrics leading to significant porosity and permeability. Because of their biomineralization processes related to microbial activity, the microbial carbonates are not only an important window to understand the evolution of the earth's surface environment, but also capable of forming large-scale reservoirs, and their scientific and economic values are self-evident.  相似文献   
42.
为明确柴达木盆地西部地区新生界微生物碳酸盐岩微观结构及主要造岩矿物的成因机理,本文利用岩芯观察、薄片分析、扫描电镜及电子探针分析等实验测试方法,对南翼山地区上油砂山组微生物碳酸盐岩微观结构、矿物特征差异性及矿化作用开展研究。分析认为南翼山地区上油砂山组发育厚层泥晶碳酸盐岩,单层厚度3~5 m;局部发育薄层微生物碳酸盐岩,单层厚度以30~50 cm为主,单层最大厚度2 m。微生物碳酸盐岩类型以凝块石为主、局部发育叠层石,二者混合共生,通过扫描电镜在微生物碳酸盐岩中发现了大量钙化的细胞外聚合物(EPS)组构与少量微生物化石,为湖相微生物碳酸盐岩的形成提供了生物学证据。研究结果表明:(1)微生物碳酸盐岩主要矿物类型为方解石,微观组构复杂、类型多样,包括球粒、团粒、菱面体以及片状结构等。球粒粒径分布范围50~80 nm。团粒由若干纳米级球粒聚合黏结形成,粒径为几微米至几十微米。片状方解石往往大小不等、形态各异,粒径通常为1~10μm。(2)发现大量钙化EPS组构及疑似微体化石,包括球状、杆状及丝状体。杆状体微生物化石直径约0.4μm,长0.5~1μm。丝状体微生物化石直径约0.3~0.5μm,...  相似文献   
43.
Microbial signatures in peritidal siliciclastic sediments: a catalogue   总被引:12,自引:0,他引:12  
A catalogue of microbial structural signatures is presented, based upon the coupling of fundamental biogeochemical–microbial processes and local morphogenetic determinants. It summarizes a collection of sedimentary structures obtained from two modern siliciclastic peritidal environments in different climatic zones (temperate humid: Mellum Island, southern North Sea; subtropical arid: coast of southern Tunisia). Textural geometries reveal a high structural diversity, but their determinants are primarily based upon six major parameters: (1) intrinsic biofactors: structural diversification of sedimentary microbial films and mats inherent in the organisms, i.e. their construction morphology, growth, taxis and behaviour, and local abundance of specific morphotypes. Most prominent are the ensheathed filamentous cyanobacteria Microcoleus chthonoplastes and Lyngbya aestuarii, and the sheathless filamentous cyanobacterium Oscillatoria limosa. (2) Biological response to physical disturbances: sediment supply, erosion and fracturing of surface layers resulting from desiccation cause growth responses of biofilms and microbial mats. (3) Trapping/binding effects: physicobiological processes give rise to grain orientations and wavy to lenticular lamina, lamina‐specific grain arrangements and ‘sucrose’ calcium carbonate accumulations. (4) Secondary physical deformation of biogenic build‐ups: mechanical stresses acting upon sediments overgrown and biostabilized by biofilms and mats produce erosional and overthrust structures. (5) Post‐burial processes: textural fabrics that evolve from mechanical effects of gas formation from decaying mats, and features related to the formation of authigenic minerals (calcium carbonates, calcium sulphates, pyrite). (6) Bioturbation and grazing: post‐depositional structures, such as Skolithos‐type dwellings, traces of burrowing insects, gastropod grazing traces and faecal pellets. In synopsis, the catalogue firstly comprises a sound set of ubiquitous signatures. This uniformity in architectural characteristics is attributed to the presence and local dominance of certain microbes throughout the different settings. The catalogue secondly documents signatures that are extremely sensitive to tidal position, hydrodynamic regime and overall climatic conditions. These kinds of signature indicate narrow facies zones, which often coincide with the activity or dominance zones of certain organisms. An overview of structures of microbial origin from the fossil record underlines the potential of many of the signatures included in this catalogue to become fossilized and provide strong indicators of former siliciclastic tidal settings.  相似文献   
44.
Processes of carbonate precipitation in modern microbial mats   总被引:20,自引:0,他引:20  
Microbial mats are ecosystems that arguably greatly affected the conditions of the biosphere on Earth through geological time. These laminated organosedimentary systems, which date back to > 3.4 Ga bp, are characterized by high metabolic rates, and coupled to this, rapid cycling of major elements on very small (mm-µm) scales. The activity of the mat communities has changed Earth's redox conditions (i.e. oxidation state) through oxygen and hydrogen production. Interpretation of fossil microbial mats and their potential role in alteration of the Earth's geochemical environment is challenging because these mats are generally not well preserved.Preservation of microbial mats in the fossil record can be enhanced through carbonate precipitation, resulting in the formation of lithified mats, or microbialites. Several types of microbially-mediated mineralization can be distinguished, including biologically-induced and biologically influenced mineralization. Biologically-induced mineralization results from the interaction between biological activity and the environment. Biologically-influenced mineralization is defined as passive mineralization of organic matter (biogenic or abiogenic in origin), whose properties influence crystal morphology and composition. We propose to use the term organomineralization sensu lato as an umbrella term encompassing biologically influenced and biologically induced mineralization. Key components of organomineralization sensu lato are the “alkalinity” engine (microbial metabolism and environmental conditions impacting the calcium carbonate saturation index) and an organic matrix comprised of extracellular polymeric substances (EPS), which may provide a template for carbonate nucleation. Here we review the specific role of microbes and the EPS matrix in various mineralization processes and discuss examples of modern aquatic (freshwater, marine and hypersaline) and terrestrial microbialites.  相似文献   
45.
Interpreting the physical dynamics of ancient environments requires an understanding of how current‐generated sedimentary structures, such as ripples and dunes, are created. Traditional interpretations of these structures are based on experimental flume studies of unconsolidated quartz sand, in which stepwise increases in flow velocity yield a suite of sedimentary structures analogous to those found in the rock record. Yet cyanobacteria, which were excluded from these studies, are pervasive in wet sandy environments and secrete sufficient extracellular polysaccharides to inhibit grain movement and markedly change the conditions under which sedimentary structures form. Here, the results of flume experiments using cyanobacteria‐inoculated quartz sand are reported which demonstrate that microbes strongly influence the behaviour of unconsolidated sand. In medium sand, thin (ca 0·1 to 0·5 mm thick) microbial communities growing at the sediment–water interface can nearly double the flow velocity required to produce the traditional sequence of ripple→dune→plane‐bed lamination bedforms. In some cases, these thin film‐like microbial communities can inhibit the growth of ripples or dunes entirely, and instead bed shear stresses result in flip‐over and rip‐up structures. Thicker (ca≥1 mm thick) microbial mats mediate terracing of erosional edges; they also, foster transport of multi‐grain aggregates and yield a bedform progression consisting of flip‐overs→roll‐ups→rip‐ups of bound sand.  相似文献   
46.
Asphaltites, long known to strand along the coastline of southern Australia and as distantly as New Zealand and Macquarie Island, are widely regarded as artefacts of submarine oil seepage. Their remarkably uniform composition suggests a common source: marine shale containing sulphur-rich Type II kerogen, probably deposited during an Early Cretaceous oceanic anoxic event (OAE). Suitable hydrocarbon kitchens may exist in the offshore Bight and Otway basins. The physical character of the asphaltites, including laminations and flow structures, and their degree of alteration, which is not the result of biodegradation or extensive water washing, suggest an origin from subsurface tar mats subsequently exposed by the incision of submarine canyons, with the possible formation of asphaltic volcanoes. API gravities of 4–18° impart quasi-neutral buoyancy, implying many asphaltites were submerged drifters prior to stranding, their degree of weathering reflecting, at least in part, the residence time in the marine environment. For any individual asphaltite specimen, this will depend on the proximity of the seafloor seep to the stranding site, an important consideration when attempting to locate their point of origin.This study investigates the hydrocarbon biomarker signatures and n-alkane δ13C profiles of asphaltite specimens from stranding sites on the Eyre Peninsula (n = 2), Kangaroo Island (n = 4) and the Limestone Coast (n = 3), South Australia, and the south island of New Zealand (n = 2). Sub-samples of the interior and weathered surface of each specimen were analysed. No distinction could be made between strandings based on their source-dependent molecular and isotopic signatures, confirming their common origin. Comparison of the interior and exterior sub-samples revealed subtle although consistent differences. Given their degree of degradation and isotopic variance, these Australasian asphaltites seem to be products of low intensity seeps in the Ceduna Sub-basin of the Bight Basin and/or Morum Sub-basin of the Otway Basin.  相似文献   
47.
古油气水界面恢复方法综述   总被引:8,自引:0,他引:8  
油气藏油气水界面的变迁记录了油气藏形成以后调整、改造,甚至破坏的历史。恢复各地质历史时期的古油气水界面的位置,可以确定地下烃类流体运聚成藏的时间,恢复流体成藏后的变迁、调整过程,帮助我们认识油气藏形成与分布的规律。给出了古油气水界面恢复的6种方法,并指出了各种方法适用的地质条件、存在问题及发展方向。6种方法中,相对而言,研究含油气包裹体丰度变化来恢复古油气水界面在理论上和实践上都是可行的。  相似文献   
48.
Fourteen microbially induced sedimentary structures (MISS) have been described from the middle part of the Jodhpur Sandstone. They have been subdivided under three headings; (A) those microbially induced structures which could be compared with the structures also produced by the inorganic processes, (B) those structures which have unique morphologies and could not have produced by inorganic processes alone and (C) those structures which could not acquire specific morphologies and can be referred to as ‘textured morphological surfaces’ in the sense of Gehling and Droser (2009). These forms are described and their stratigraphic significance discussed. There are some morphologies like Arumberia banksi, Rameshia rampurensis and Jodhpuria circularis which have been restricted to latest Neoproterozoic sediments.  相似文献   
49.
The sedimentology of an 8.22-m long core of late-Holocene deposits in the submerged Crescent Island Crater basin of Lake Naivasha, Kenya, is used to reconstruct decade-scale fluctuations in lake-surface elevation during the past 1800 yrs. Lake-depth inference for the past 1000 yrs is semi-quantitative, based on (1) relationships between lake level and bottom dynamics predicted by wave theory, and (2) historical validation of the effects of lake-level fluctuation and hydrologic closure on sediment composition in Crescent Island Crater and nearby Lake Oloidien. In these shallow fluctuating lakes, organic-carbon variation in a lithological sequence from clayey mud to algal gyttja is positively correlated with lake depth at the time of deposition, because the focusing of oxidized littoral sediments which dilute autochthonous organic matter before burial is reduced during highstands. The lake-level reconstruction for Lake Naivasha agrees with other adequately dated lake-level records from equatorial East Africa in its implication of dry climatic conditions during the Mediaeval Warm Period and generally wet conditions during the Little Ice Age. Crescent Island Crater survived widespread aridity in the early-19th century as a fresh weedy pond, while the main basin of Lake Naivasha and many other shallow East African lakes fell dry and truncated their sediment archive of Little Ice Age climatic variability.  相似文献   
50.
The evolution of early diagenetic calcite cements in microbial mats of recent supratidal sediments of the southern North Sea is modeled in a two-dimensional microscale approach by a cellular automaton model (CAM). Calcite is traced out in the model by virtual calcium distribution patterns obtained from runs under different assumptions concerning sediment-intrinsic conditions. For justification of the CAM, real calcium distribution patterns, documented by scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM/EDX), are quantitatively compared with the virtual patterns on the basis of multifractal analyses. The formation of high magnesian calcite as a consequence of biogenic anaerobic decomposition of organic matter starts at certain initial calcite domains. In this stage an inhomogeneous and multifractal calcium distribution is characteristic. Nearly complete remineralization of organic matter leads to monofractal behavior of generalized fractal dimensions (DB(q) ±1.84). The CAM results confirm that calcite formation is a self-determining morphogenetical process and diffusive transport processes of reactants within the mat affect the biogenic calcite formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号