首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   59篇
  国内免费   137篇
测绘学   1篇
大气科学   1篇
地球物理   110篇
地质学   325篇
海洋学   10篇
天文学   1篇
综合类   2篇
自然地理   20篇
  2022年   11篇
  2021年   17篇
  2020年   26篇
  2019年   25篇
  2018年   15篇
  2017年   14篇
  2016年   12篇
  2015年   14篇
  2014年   19篇
  2013年   19篇
  2012年   13篇
  2011年   17篇
  2010年   7篇
  2009年   36篇
  2008年   42篇
  2007年   25篇
  2006年   21篇
  2005年   27篇
  2004年   25篇
  2003年   16篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有470条查询结果,搜索用时 600 毫秒
401.
The Nonsberg–Ultental Region of northern Italy contains a Palaeozoic mélange that was partially subducted during the Variscan orogeny. This mélange is constituted mainly by metapelites characterized by shale-type REE-patterns, displaying partial melting which began under high-pressure conditions. The resulting migmatites enclose minor slivers of mantle-wedge peridotites that have been incorporated into the mélange during subduction. Peridotites display important large ion lithophile elements (LILE) enrichment consequent to amphibole recrystallization contemporaneously with metapelite migmatization at P ≈ 2.7 GPa and T ≈ 850 °C in the garnet–peridotite field. Crustal and mantle (ultramafic) rocks of the mélange display the same Sm–Nd ages of about 330 ± 6 Ma, which dates both the metamorphic peak and the migmatization event. The zircon U–Pb age of the metasomatic amphibolitic contact between garnet peridotite and migmatite is identical (333.3 ± 2.4 Ma) within analytical errors. Therefore, metasomatism, migmatization and peak metamorphism are constrained to the same event. The presence of Cl-rich apatite and ferrokinoshitalite in the contact amphibolite, together with the trace-element patterns of peridotites, suggest that metasomatism was driven by Cl- and LILE-rich fluids derived from ocean water transported into the subduction zone by sediments and crustal rocks. These fluids interacted with the crust, prompting partial melting under water oversaturated conditions and partitioning LILE from the crust itself. Peridotites, which were well below their wet solidus temperature, could not melt but they recrystallized in the crustal mélange under garnet-facies conditions. Crustal fluids caused extensive hydration and LILE-enrichment in peridotites and severe Sm–Nd isotope disequilibrium between minerals, especially in the recrystallized peridotites. The proposed scenario suggests massive entrapment of crustal aqueous fluids at high-pressure conditions within subduction zones.  相似文献   
402.
A suite of tsunami spaced evenly along the subduction zone to the south of Indonesia (the Sunda Arc) were numerically modelled in order to make a preliminary estimate of the level of threat faced by Western Australia from tsunami generated along the Arc. Offshore wave heights from these tsunami were predicted to be significantly higher along the northern part of the west Australian coast than for the rest of the coast south of the town of Exmouth. In particular, the area around Exmouth may face a higher tsunami hazard than other areas of the West Australian coast nearby. Large earthquakes offshore of Java and Sumbawa are likely to be a greater hazard to WA than those offshore of Sumatra. Our numerical models indicate that a magnitude 9 or above earthquake along the eastern part of the Sunda Arc has the potential to significantly impact a large part of the West Australian coastline. The Australian government reserves the right to retain a non-exclusive, royalty free license in and to any copyright.  相似文献   
403.
原特提斯的消减极性:西昆仑128公里岩体的启示   总被引:5,自引:2,他引:5  
128公里岩体是西昆仑造山带中一个早古生代的花岗闪长岩体,长期以来一直是研究西昆仑构造演化的重要参考依据。然而由于区域地质资料的不足和研究手段的不同,对该岩体的形成年代、源区性质以及构造背景等方面还存在着不同的认识。本文试图通过地质年代学和地球化学方面的研究,明确128公里岩体的成岩时代和构造背景,进而制约西昆仑的早古生代构造演化。单颗粒锆石的U-Pb定年结果表明128公里岩体形成于471±5 Ma并含有可能形成于早期岩浆房或继承自源区的490 Ma左右的锆石。128公里岩体富Al_2O_3(15.7%~18.4%),Sr(470~864μg/g)和大离子亲石元素但相对亏损 高场强元素,相对富集轻稀土且具有低到中等的负铕异常(δEu=~0.7),显示出典型的Ⅰ型弧花岗岩特征。尽管其富集Al_2O_3、Sr、相对低的MgO含量和Y/Yb比值使其非常类似于埃达克岩,但其相对高的Yb(1.92~2.88μg/g)、Y(19.4~34.0μg/g)含量,低的Sr/Y(24.2~37.0)和Zr/Sm(7.3~21)比值以及相对高的初始Sr同位素组成(0.7075~0.7091)排除了消减板块在石榴石稳定区发生部分熔融的可能性。低的氧同位素组成(+5.7‰~+7.4‰)以及Sr-O同位素关系表明该岩体并非形成于地幔来源的岩浆与变质围岩间的同化混染。高的稀土含量、明显的稀土分馏以及相对高的Sr同  相似文献   
404.
Clinopyroxene phenocrysts in the Kokchetav trachybasalts are variable in composition and textures. Two distinctive cores are recognized: diopside cores and green salite cores. The diopside cores with Mg# of 80–90 are mantled by colorless salite rims with Mg# of 70–80. The green salite cores have especially low Mg# (<70) but high Al and Ti contents. A Mg-rich band (Mg#=82–90) usually occurs between a green salite core and its rim, and/or between a colorless salite mantle and its rim. Dissolution surfaces are observed on all textural variants. Two magma chambers are needed to explain the observed clinopyroxene phenocrysts. A deep chamber at about 120 km in the upper mantle in which diopside cores crystallized, and a shallow chamber at depths of less than 40 km in which diopside cores were resorbed and overgrown by salite rims or mantles. Magma mixing in the shallow chamber is responsible for the formation of dissolution surfaces between the diopside bands and the colorless salite mantles. The dissolution surfaces on the diopside cores formed in the shallow chamber as a result of pressure decrease. This magma evolution scenario is complicated by the occurrence of the crustal-origin green salite cores in diopsides. These green cores likely represent the relics of continental materials, which were captured in the deep chamber and partially re-melted. Our observations indicate that subducted continental materials were returned to the Earth's surface as a result of magmatism. This study therefore provides direct evidence of a link between subducted continental materials (slab) and magmatism in this orogenic belt.  相似文献   
405.
Systematic analysis of a grid of 3450 km of multichannel seismic reflection lines from the Solomon Islands constrains the late Tertiary sedimentary and tectonic history of the Solomon Island arc and its convergent interaction with the Cretaceous Ontong Java oceanic plateau (OJP). The OJP, the largest oceanic plateau on Earth, subducted beneath the northern edge of the Solomon arc in the late Neogene, but the timing and consequences of this obliquely convergent event and its role in the subduction polarity reversal process remain poorly constrained. The Central Solomon intra-arc basin (CSB), which developed in Oligocene to Recent time above the Solomon arc, provides a valuable record of the tectonic environment prior to and accompanying the OJP convergent event and the subsequent arc polarity reversal. Recognition of regionally extensive stratigraphic sequences—whose ages can be inferred from marine sedimentary sections exposed onland in the Solomon Islands—indicate four distinct tectonic phases affecting the Solomon Island arc. Phase 1: Late Oligocene–Late Miocene rifting of the northeast-facing Solomon Island arc produced basal, normal-fault-controlled, asymmetrical sequences of the CSB; the proto-North Solomon trench was probably much closer to the CSB and is inferred to coincide with the trace of the present-day Kia-Kaipito-Korigole (KKK) fault zone; this protracted period of intra-arc extension shows no evidence for interruption by an early Miocene period of convergent “soft docking” of the Ontong Java Plateau as proposed by previous workers. Phase 2: Late Miocene–Pliocene oblique convergence of the Ontong Java Plateau at the proto-North Solomon trench (KKK fault zone) and folding of the CSB and formation of the Malaita accretionary prism (MAP); the highly oblique and diachronous convergence between the Ontong Java plateau and the Solomon arc terminates intra-arc extension first in the southeast (Russell subbasin of the CSB) during the Late Miocene and later during the Pliocene in the northwest (Shortland subbasin of the CSB); folds in the CSB form by inversion of normal faults formed during Phase 1; Phinney et al. [Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)] show a coeval pattern of southeast to northwest younging in folding and faulting of the MAP. Phase 3: Late Pliocene–early Pleistocene arc polarity reversal and subduction initiation at the San Cristobal trench. Effects of this event in the CSB include the formation of a chain of volcanoes above the subducting Australia plate at the San Cristobal trench, the formation of the broad synclinal structure of the CSB with evidence for truncation at the uplifted flanks, and widespread occurrence of slides and “seismites” (deposits formed by seismic shaking). Phase 4: Pleistocene to Recent continued shortening and synclinal subsidence of the CSB. Continued Australia-Pacific oblique plate convergence has led to deepening of the submarine, elongate basin axis of the synclinal CSB and uplift of the dual chain of the islands on its flanks.  相似文献   
406.
Central Italy is an active tectonic area that has been recently studied by several regional mantle, Pn and SKS, studies which revealed the presence of a strong regional anisotropy. In this paper, we present the first petrophysical results on the only mantle xenoliths from Central Italy, which place new constraints on the upper mantle structures of this region. The Torre Alfina mantle xenoliths are very small in size, from few millimetres to about 1.5 cm. They are mainly dunites and harzburgites, with subordinate lherzolites and wehrlites. Since olivine and spinel are always present, they should have crystallised in the spinel-bearing lherzolite field. Their mineralogical composition is ol+spl±opx±cpx. Both olivines and pyroxenes are present as porphyroclasts and as neoblasts. The xenoliths show different degrees of recrystallization. Geothermobarometry on these xenoliths give a temperature range of 1040±40 °C and a pressure estimate of about 1.5 GPa, corresponding to 50 to 60 km depth. Previous seismic studies have estimated the Moho to be at 20 to 25 km in this region, hence the xenoliths come from a hot mantle, probably asthenospheric, below a lithosphere of about 25 to 40 km in thickness below the Moho. We measure the crystallographic preferred orientation (CPO) of olivines and pyroxenes using a SEM and the Electron Back Scattered Diffraction (EBSD) technique. The CPO shows all three axes of olivine are tightly clustered: [100] axis is typically more tightly clustered than [010] and [001] is the most widely distributed axis. The fabric strength expressed by the integral J index, varies from 4.5 to 25.9, and decreases with the degree of recrystallization. We use CPO data to calculate anisotropic seismic properties of the xenoliths. They are very homogenous and probably statistically representative of the mantle below the Torre Alfina area. Vp ranges from 8.4 to 9.1 km/s, Vs1 from 4.8 to 5.0 km/s. The seismic anisotropy is more variable; AVp ranges from 9.8% to 19.3% and AVs from 7.3% to 13.4%. The majority of the xenoliths display an orthorhombic seismic symmetry, but xenoliths with a transverse isotropic behaviour have also been observed.

We consider four geodynamic models for the source region of the xenoliths (extension, shear, upwelling, slab tilted), defined by different orientations of the structural reference frame, and we calculated for each model the variation of the seismic properties with temperature, pressure and volume fraction of orthopyroxene. After comparing this variation of calculated seismic parameters with seismic observations from the region, we form the hypothesis that the xenoliths come from either an extensional tectonic zone (lineation X and foliation plane XY horizontal) or transcurrent shear zone (lineation X horizontal and foliation plane XY vertical) and that the mantle beneath Torre Alfina is composed by 70% olivine and 30% orthopyroxene forming an anisotropic layer of about 160 or 110 km in thickness, respectively.  相似文献   

407.
Geological mapping and structural analysis of the Talas Ala Tau (Tien Shan, Kyrgyz Republic) have revealed a complex structure composed of folds with axial-plane cleavage and thrust faults verging towards the NE. The main structures of the range correspond to minor Tertiary and Carboniferous–Permian deformation superimposed on the main deformation event that took place during the Baikalian orogeny. The pervasive axial-plane cleavage diminishes in penetrativity from the hinterland to the foreland in both the Uzunakhmat and Karagoin sheets. The main thrusts developed phyllonitic shear-related rocks on the hangingwall immediately above the thrust planes. A crystal-chemical study of the phyllosilicates growth during the Baikalian deformation event along a cross-section revealed changes in the crystallinity, composition and lattice parameters of them. The phyllosilicates present in the Talas Ala Tau rocks were crystallized in very low-grade metamorphic conditions, that is below 300 °C, as indicated by their Kübler Index (KI), which decreases from SW towards the NE. Detailed TEM study of the phyllosilicates reveals a clear textural difference at the lattice level between samples with higher or lower KI parameters. There is also a clear difference in crystal-chemical parameters (KI and b) and composition between the phyllosilicates growth in relation to the axial-plane cleavage and the ones belonging to the thrust-related phyllonites. The first ones are more affected by the ferrimuscovitic vector than the phyllosilicates of phyllonites, closer to the theoretical phengitic component. Huge ranges of values of phengitic content of micas at sample level are interpreted as the result of a decompression path from at least 8 kbar. We propose a subduction geodynamic environment for the regional deformation and the origin of the phyllosilicates, as they are similar to those obtained in more recent accretionary complexes.  相似文献   
408.
A numerical calculation of the stresses associated with changes in volume during phase transitions of olivine in a descending slab results in a double layer of high shear stress along the metastable olivine wedge in the depth range 350-460 km. Stress in the upper layer is in-plane tensional and stress in the lower layer is down-dip compressional. The modeled stress field agrees with observations of stress in the Tonga double seismic zone. High shear stress also exists in the slab at depths below the metastable wedge. This stress distribution involves down-dip compression and trench-parallel tension, which agrees with about half of the focal mechanisms in the Tonga slab at depths of 460-690 km. The model supports the idea that at least two possible stress release mechanisms for deep earthquakes may act in the Tonga subducting slab. One, transformational faulting, is restricted to the metastable wedge while the other one acts below the metastable wedge.  相似文献   
409.
We investigate the stability of hypothetical layered convection in the mantle and the mechanisms how the downwelling structures originating in the lower layer are generated. The stability is studied by means of numerical simulations of the double-diffusive convection in a 2D spherical model with radially dependent viscosity. We demonstrate that the stability of the layering strongly depends not only on the density contrast between the layers but also on the heating mode and the viscosity profile. In the case of the classical Boussinesq model with an internally heated lower layer, the density contrast of about 4% between the compositionally different materials is needed for the layered flow to be maintained. The inclusion of the adiabatic heating/cooling in the model reduces the temperature contrast between the two layers and, thus, enhances the stability of the layering. In this case, a density contrast of 2-3% is sufficient to preserve the layered convection on a time scale of billions of years. The generation of the downwelling structures in the lower layer occurs via mechanical or thermal coupling scenarios. If the viscosity dependent on depth and average temperature at each depth is considered, the low viscosity zone develops at a boundary between the two convecting layers which suppresses mechanical coupling. Then the downwelling structures originating in the lower layer develop beneath upper layer subductions, thus resembling continuous slab-like structures observed by seismic tomography.  相似文献   
410.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号