首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   59篇
  国内免费   137篇
测绘学   1篇
大气科学   1篇
地球物理   110篇
地质学   325篇
海洋学   10篇
天文学   1篇
综合类   2篇
自然地理   20篇
  2022年   11篇
  2021年   17篇
  2020年   26篇
  2019年   25篇
  2018年   15篇
  2017年   14篇
  2016年   12篇
  2015年   14篇
  2014年   19篇
  2013年   19篇
  2012年   13篇
  2011年   17篇
  2010年   7篇
  2009年   36篇
  2008年   42篇
  2007年   25篇
  2006年   21篇
  2005年   27篇
  2004年   25篇
  2003年   16篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   9篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有470条查询结果,搜索用时 93 毫秒
111.
As Morozov [Morozov, I. B. (2004). Crustal scattering and some artefacts in receiver function images. Bull. Seismol. Soc. Am., 94 (4), 1492–1499.] suggested, for a teleseismic array targeting subducting crust in a zone of active subduction, scattering from the strong horizontal velocity heterogeneity beneath the trench zone itself produces subhorizontally-propagating waves that should be observed as coherent dipping events in receiver functions (RF). Due to similar RF delay times and moveouts, these events could be difficult to distinguish from backscattered P- and S-wave modes. To further verify this suggestion, we performed a full-waveform, 3-D visco-elastic finite-difference modelling of teleseismic wave propagation within a simplified model of a subduction zone. The synthetics show strong scattering from the area beneath the trench, dominated by the mantle and crustal P-waves propagating at 6.2–8.1 km/s and slower. These scattered waves occupy the same time and moveout intervals as the backscattered converted modes, and also have similar amplitudes. Although their amplitude decay characters are different, the uncertainty in the knowledge of the velocity and density structure of the subduction zone could make distinguishing between these modes difficult. However, under minimal assumptions, recent observations of receiver function amplitudes decreasing away from the trench support the interpretation of (sub-) trench-zone scattering.Although still limited in its representation of crustal heterogeneity, 3-D modelling suggests that scattering from near-Moho crustal structures plays a key role in the formation of teleseismic wavefields. Recognition of scattered noise in teleseismic records could help to constrain major crustal structures, particularly those with strong horizontal velocity contrasts at near-Moho depths, such as crustal sutures, subduction fault zones, and mountain roots. Matching of the observed arrivals with wavefield synthetics could help constrain the locations and parameters of such structures and also help substantiate the interpretations.  相似文献   
112.
Thermal anomalies in tectonically active areas are often attributed to sub-seafloor fluid circulation and faulting mechanisms, particularly in subduction zones where the largest thrust earthquakes occur. Postseismic fluid flow is enabled by the poroelastic response of the fault system to the earthquake's strain field, as well as by the rupturing of permeability barriers in the vicinity of the fault zone. We investigated the relative importance of these mechanisms on postseismic pore-pressure diffusion and advective heat transport in the subduction zone setting. A two-dimensional numerical fluid flow and heat transport model was developed for the Costa Rica subduction zone offshore of the Nicoya Peninsula. The flow and transport model was coupled with an earthquake strain model to quantify the effects of coseismic strain and permeability enhancement on fluid pressures and temperatures within the Costa Rica margin. Coseismic changes in pore pressure and postseismic pore-pressure diffusion were found to be sensitive to the compressibility of the porous medium, and patterns of pore-pressure recovery were more complex than that predicted by theoretical faulting models. Coseismic contraction and extension of the crust produced high fluid pressures close to the fault, while the inflow of fluid from depth increased fluid pressures several years following the simulated fault slip. Crustal deformation alone was not observed to perturb the temperature field. Laterally extensive permeability increases of two orders of magnitude along the décollement were required to produce small changes in heat flow. Local permeability changes in the upper slope region of least five orders of magnitude were necessary to noticeably affect heat flow. The results of the numerical simulations may help to refine conceptual faulting models and provide guidance for locating long-term hydrologic monitoring sites at Costa Rica and other subduction zones.  相似文献   
113.
陕西勉略宁三角区基本地质组成及演化   总被引:5,自引:0,他引:5  
陕西勉略宁三角区发育4大套不同构造背景下所形成的岩石组合,表明区内经历了晚太古结晶基底与早中元古浅变质火山岩过渡基底形成、晚元古一早古生代扬子大陆边缘演化、勉略海槽演化及陆内造山4个大的复杂演化阶段,最终形成今日之基本构造格局与地质面貌.  相似文献   
114.
大别山东段双变质带特征和古构造演化   总被引:7,自引:0,他引:7       下载免费PDF全文
本文采用变质作用和叠加变质作用分析方法在大别山东段建立了高压低温变质带和与之对应的高温低压变质带。高压低温变质带和高温低压变质带具有典型的古地热梯度、标型矿物及其组合;后者还广泛发育混合岩化和花岗岩化,在大别山中部地区构成一条典型的热轴。双变质带是北淮阳深蚀的地缝合带重要组成部分,是划分古板块边界重要依据之一。它的发现进一步明确了该区古构造环境和演化  相似文献   
115.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   

116.
The lateral ending of the South Shetland Trench is analysed on the basis of swath bathymetry and multichannel seismic profiles in order to establish the tectonic and stratigraphic features of the transition from an northeastward active to a southwestward passive margin style. This trench is associated with a lithospheric-scale thrust accommodating the internal deformation in the Antarctic Plate and its lateral end represents the tip-line of this thrust. The evolutionary model deduced from the structures and the stratigraphic record includes a first stage with a compressional deformation, predating the end of the subduction in the southwestern part of the study area that produced reverse faults in the oceanic crust during the Tortonian. The second stage occurred during the Messinian and includes distributed compressional deformation around the tip-line of the basal detachment, originating a high at the base of the slope and the collapse of the now inactive accretionary prism of the passive margin. The initial subduction of the high at the base of the slope induced the deformation of the accretionary prism and the formation of another high in the shelf—the Shelf Transition High. The third stage, from the Early Pliocene to the present-day, includes the active compressional deformation of the shelf and the base-of-slope around the tip-line of the basal detachment, while extensional deformations are active in the outer swell of the trench.  相似文献   
117.
A. Yamaji  T. Sakai  K. Arai  Y. Okamura 《Tectonophysics》2003,369(1-2):103-120
Transpressional tectonics characterizes the SW Japan arc. However, we will show in this article that offshore seismic profiles and onshore mesoscale faults indicate that the eastern part of the forearc was subject to transtensional tectonics since ca. 2.0 Ma. Offshore normal faults imaged on the profiles run parallel to the Nankai Trough, and started activity at 1.0 Ma, but transtensional tectonics commenced the onshore area earlier. In order to understand the stress history in the forearc region, we collected fault-slip data from onshore mesoscale faults in Plio-Pleistocene sedimentary rocks in the Kakegawa area at the northeastern extension of the offshore normal faults. Most of the mesoscale faults are oblique-normal, indicating that the area was subject to transtensional tectonics. The faults suggest that the compressional tectonic regime was followed by the transtensional one at 2.0 Ma, in agreement with regional tectonostratigraphic data, which indicate that folding ceased at that time. Present compressional stress followed the transtensional tectonic regime sometime in the late Pleistocene. Transtensional or extensional tectonic zone shifted from the Kakegawa area to the offshore region.These observations indicate that the state of stress just behind the accretionary prism of the eastern Nankai subduction zone has been unstable in the last 2 million years, suggesting that the forearc wedge has been at critical state in that gravitational force and basal shear traction on the wedge have been balanced, but the forearc tectonics has been susceptible to small perturbations. Possible factors compatible with the observed stress history include the change of subduction direction of the plate at 1.0 Ma, and the rapid uplift of Central Japan thereafter.  相似文献   
118.
A suite of 14 diamond-bearing and 3 diamond-free eclogite xenoliths from the Newlands kimberlite, South Africa, have been studied using the Re–Os isotopic system to provide constraints on the age and possible protoliths of eclogites and diamonds. Re concentrations in diamond-bearing eclogites are variable (0.03–1.34 ppb), while Os concentrations show a much more limited range (0.26–0.59 ppb). The three diamond-free eclogites have Re and Os concentrations that are at the extremes of the range of their diamond-bearing counterparts. 187Os/188Os ranges from 0.1579 to 1.4877, while 187Re/188Os varies from 0.54 to 26.2 in the diamond-bearing eclogites. The highly radiogenic Os in the diamond-bearing eclogites (γOs=23–1056) is consistent with their high 187Re/188Os and requires long-term isolation from the convecting mantle. Re–Os model ages for 9 out of 14 diamond-bearing samples lie between 3.08 and 4.54 Ga, in agreement with FTIR spectra of Newlands diamonds that show nitrogen aggregation states consistent with diamond formation in the Archean. Re–Os isochron systematics for the Newlands samples do not define a precise isochron relationship, but lines drawn between subsets of the data provide ages ranging from 2.9 to 4.1 Ga, all of which are suggestive of formation in the Archean. The Re–Os systematics combined with mineral chemistry and stable isotopic composition of the diamond-bearing eclogites are consistent with a protolith that has interacted with surficial environments. Therefore, the favored model for the origin of the Newlands diamond-bearing eclogites is via subduction. The most likely precursors for the Kaapvaal eclogites include komatiitic ocean ridge products or primitive portions of oceanic plateaus or ocean islands.  相似文献   
119.
In this paper, we present a compilation of modern seismic and seismological methods applied to image the subduction process in North Chile, South America. We use data from active and passive seismic experiments that were acquired within the framework of the German Collaborative Research Center SFB267 ‘Deformation Processes in the Andes’. The investigation area is located between 20° and 25°S and extends from the trench down to 100 km depth. In the depth range between the sea bottom and 15 km, we process an offshore seismic reflection profile using a recently developed velocity-model-independent stacking procedure. We find that the upper part of the subducting oceanic lithosphere in this depth range is characterized by a horst-and-graben structure. This structure supports an approximately 3 km thick coupling zone between the plates. In the depth range between 15 and 45 km, we analyse the spatial distribution of aftershocks of the Antofagasta earthquake (1995). The aftershock hypocenters are concentrated in an approximately 3 km thick layer. Finally, in the depth range between 45 and 100 km, we apply Kirchhoff prestack depth migration to the onshore ANCORP profile. A double reflection zone is observed between 45 and 60 km depth, which may represent the upper and lower boundary of the subducted oceanic crust. Over the whole range down to more than 80–90 km depth, we obtain an image of the subducting slab. At that depth, the hypocenters of local earthquakes deviate significantly in the direction perpendicular to the slab face from the reflective parts of the slab. Consequently, our results yield a complete seismic image of the downgoing plate and the associated seismic coupling zone.  相似文献   
120.
The Raspas Metamorphic Complex of southwestern Ecuador is regarded as the southernmost remnant of oceanic and continental terranes accreted in the latest Jurassic–Early Cretaceous. It consists of variably metamorphosed rock types. (1) Mafic and ultramafic rocks metamorphosed under high-pressure (HP) conditions (eclogite facies) show oceanic plateau affinities with flat REE chondrite-normalized patterns, Nd150 Ma ranging from +4.6 to 9.8 and initial Pb isotopic ratios intermediate between MORB and OIB. (2) Sedimentary rocks metamorphosed under eclogitic conditions exhibit LREE enriched patterns, strong negative Eu anomalies, Rb, Nb, U, Th, Pb enrichments, low Nd150 Ma values (from −6.4 to −9.5), and high initial 87Sr/86Sr and 206,207,208Pb/204Pb isotopic ratios suggesting they were originally sediments derived from the erosion of an old continental crust. (3) Epidote-bearing amphibolites show N-MORB affinities with LREE depleted patterns, LILE, Zr, Hf and Th depletion, high Nd150 Ma (>+10) and low initial Pb isotopic ratios.The present-day well defined internal structure of the Raspas Metamorphic Complex seems to be inconsistent with the formerly proposed interpretation of a “tectonic mélange”. The association of oceanic plateau rocks and continent-derived sediments both metamorphosed in HP conditions suggests that the thin edge of the oceanic plateau first entered the subduction zone and dragged sediments downward of the accretionary wedge along the Wadatti–Benioff zone. Subsequently, when its thickest part arrived into the subduction zone, the oceanic plateau jammed the subduction processes, due to its high buoyancy.In Ecuador and Colombia, the latest Jurassic–Early Cretaceous suture involves HP oceanic plateau rocks and N-MORB rocks metamorphosed under lower grades, suggesting a composite or polyphase nature for the latest Jurassic–Early Cretaceous accretionary event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号