首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   40篇
  国内免费   30篇
测绘学   11篇
大气科学   9篇
地球物理   115篇
地质学   78篇
海洋学   58篇
天文学   4篇
综合类   7篇
自然地理   31篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   12篇
  2019年   21篇
  2018年   7篇
  2017年   13篇
  2016年   8篇
  2015年   13篇
  2014年   9篇
  2013年   19篇
  2012年   7篇
  2011年   16篇
  2010年   18篇
  2009年   9篇
  2008年   16篇
  2007年   16篇
  2006年   7篇
  2005年   13篇
  2004年   9篇
  2003年   8篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   8篇
  1997年   9篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
131.
This paper researches the behavior of using soil testing formula fertilizer at farms of different sizes. The study develops a probit model based on peasant household survey data from 11 grain production areas. The results prove that: First, obvious differences exist in the distribution of formula fertilizer use ratio among farms of different sizes; large-scale farmers are the highest, small-scale farmers are the lowest. Second, from external factors, the increased yield of corn, soil testing services, and information dissemination, it is clear that training has a significant positive effect on farmers’ use behavior; the influence of soil testing services is the greatest. Third the higher the degree of organization, marketization and scale of a farm, the more likely the farmer is to use soil testing formula fertilizer. Policy recommendations are made on the basis of the empirical research presented in this paper.  相似文献   
132.
Overflow‐driven lateral connectivity significantly influences the spatial distribution and diversity of floodplain habitats and biota. Proper understanding of lateral connectivity in floodplain and backwater channels is therefore critical for assessment of river quality and for targeting management or restoration actions. In this study, we present a methodological framework for spatial and temporal assessments of overflow‐driven lateral connectivity at two spatial scales: bypass reach and backwater channel. Firstly, we compute the relative elevations, as well as overflow discharge, duration, and frequency using a simple, raster‐based method that uses a LiDAR digital elevation model (DEM), rating curves, and streamflow time series. Subsequently, we analyse the accuracy of this approach with respect to the accuracy of a DEM and evaluate its further applications. Altogether, four 10‐km‐long bypass reaches and 11 backwater channels are analysed, located along the Rhône River corridor in France. The results proved the precision of the method to be affected by the LiDAR DEM accuracy, which was on average more precise in a typically homogeneous floodplain setting rather than for backwater channel plugs with pronounced topographic complexity and usually riparian forest canopy. Amongst the four studied reaches, Brégnier Cordon proved to have the greatest flooding dynamics, followed by Belley and Chautagne. The hydrological connectivity pattern of Pierre Bénite differed significantly. Three longitudinal patterns of hydrological connectivity of backwater channels displayed stepwise advancement of the water. The presented results can be used to assess ecological potential of floodplain habitats and their historic and prospective evolution through time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
133.
Ice processes taking place in steep channels are sensitive to the thermal and hydrological regimes of upstream reaches and tributaries as well as to the local channel morphology. This work presents freezeup, mid‐winter, and breakup data from four channels of increasing order located in a cold temperate watershed during the winter 2010–2011. From headwater channels to the main drainage system, water temperature, ice coverage, and ice processes are reported and related to weather conditions and to channel characteristics. Headwater channels only formed ephemeral ice features, and their water temperature reached as much as 4 °C in mid‐winter. On the other hand, larger channels formed impressively large ice dams, some of them reaching 2 m in height. The development of a suspended ice cover partially insulated the channels; as a result, water temperatures remained above 0 °C even for air temperatures well below freezing. This work presents steep channels ice processes that have not been described in previous publications. The concept of a watershed cryologic continuum (WCC) is developed from the data collected at each channel order. This concept emphasizes the feedback loops that exist between morphology, hydrology, heat, and ice processes in a given watershed and can lead to a better understanding of ice processes taking place at any channel location within that watershed. The WCC can also contribute in improving our understanding of the impacts of climate change on the cryologic and thermal regimes of steep channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
134.
This paper investigates the interplay of the hydrogeological characteristics, soil properties and recent land reclamation projects on the distribution of waterlogging and salinization within the Farafra Oasis. The multi‐temporal remote sensing data and field observations show that new reclaimed areas have been recently cultivated in distant areas from the old agricultural land. These new cultivations have developed widespread waterlogging, seepage channels and soil salinization. Analyses of the Shuttle Radar Topography Mission digital elevation model (DEM) showed that both old and new agricultural areas are located within same closed drainage basin. The fluvial channels of these catchments, which were developed during wet climatic pluvial, have largely been obliterated by the prevailing aridity and often buried under aeolian deposits. However, the new cultivations have been developed on the fingertips of these fluvial channels, while the old fields occupy the low‐level playas. The soil of the new cultivated areas is mainly lithic with a high calcium carbonate content, thus limiting the downward percolation of excess irrigation water and therefore developing perched water table and seepage through the palaeo‐channels. The automatically extracted drainage networks from DEM resemble fluvial patterns and coincide with the seepage channels slowly heading toward old cultivation. The inactive alluvial channels and landforms have to be considered when planning for new cultivation in dryland catchments to better control waterlogging and salinization hazard. It is highly recommended that newly developed seepage channels have to be detected and intercepted before reaching old agriculture areas. Therefore, the ‘dry‐drainage’ concept can be implemented as the seepage water can be conveyed into nearby playas reserved for evaporation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
135.
沙漠倒置河床是干旱区一种特殊的河流状正地貌,这种地形倒置现象蕴含着河床由负转正的重要环境变化信息。本文遵循地貌学思路,基于全球范围内对沙漠倒置河床的研究报道以及野外勘察工作,对该地貌的空间分布、形态特征、物质组成、沉积结构以及形成机制进行了详细梳理。总体而言,世界各大主要沙漠地区均发育该地貌类型,其表层多为岩石碎屑或胶结物硬层,下伏质地相对松软的砂、黏土物质,由于河床和河岸周边沉积物的差异化侵蚀,河床被相对抬高。基于此,对火星倒置河床的成因机制、物质组成和形成时间进行了讨论。尽管对地球上沙漠倒置河床的研究已经取得一定进展,但未来研究仍需对其形成年代及其代表的气候意义进行深入分析;同时还应更多地与不同类型的火星倒置河床进行类比研究,这将对揭示火星水文活动和环境变化等科学问题提供重要依据。  相似文献   
136.
The Oligo‐Miocene Caspe Formation corresponds to the middle fluvial facies of the wider Guadalope‐Matarranya fluvial fan, located in the South‐east Ebro foreland basin (North‐east Spain). At the time of the Caspe Formation deposition, this sector of the Ebro basin underwent a very continuous, moderate sedimentation rate. Lithofacies comprise deposits from channellized and unchannellized flows. Channellized flow lithofacies form multi‐storey ribbon‐like sandstone bodies that crop out as extensive sandstone ridges belonging to exhumed channel networks. Width/thickness ratios of these channel‐fill bodies average close to six. Sinuosity is usually low (most common values around 1·1), although it can be high locally (up to 2). Thicknesses range from a few metres to 15 m. Unchannellized flow lithofacies form tabular bodies that can be ascribed to overbank deposits (levées, crevasse splays and fine‐grained floodplain deposits) and also to frontal lobes, although recognition of this last case requires exceptional outcrop conditions or geophysical subsurface studies. The unchannellized flow lithofacies proportion ranges from 75% to 97·8%. Methods applied to this study include detailed three‐dimensional architectural analysis in addition to sedimentological analysis. The architecture is characterized by an intricate network of highly interconnected ribbon‐like sandstone bodies. Such bodies are connected by three kinds of connections: convergences, divergences and cross‐cuttings. Although the Caspe Formation lithofacies and architecture resemble anastomosed channels (low topographic gradient, high preservation potential, moderate aggradation rate, high lateral stability of the channels, dominance of the ribbon‐like morphologies and high proportion of floodplain to channel‐fill sediments), an unambiguous interpretation of the channel networks as anastomosed or single threaded cannot be established. Instead, the observed architecture could be considered as the product of the complex evolution of a fluvial fan segment, where different network morphologies could develop. A facies model for aggrading ephemeral fluvial systems in tectonically active, endorheic basins is proposed.  相似文献   
137.
Aerial thermal imaging is used to study grain-size distributions and induration on a wide variety of alluvial fans in the desert southwest of the United States. High-resolution aerial thermal images reveal evidence of sedimentary processes that rework and build alluvial fans, as preserved in the grain-size distributions and surface induration those processes leave behind. A catalog of constituent sedimentary features that can be identified using aerial thermal and visible imaging is provided. These features include clast-rich and clast-poor debris flows, incised channel deposits, headward-eroding gullies, sheetflood, lag surfaces, active/inactive lobes, distal sand-skirts and basin-related salt pans. Ground-based field observations of surface grain-size distributions, as well as morphologic, cross-cutting and topographic relationships were used to confirm the identifications of these feature types in remotely acquired thermal and visible images. Thermal images can also reveal trends in grain sizes between neighboring alluvial fans on a regional scale. Although inferences can be made using thermal images alone, the results from this study demonstrate that a more thorough geological interpretation of sedimentary features on an alluvial fan can be made using a combination of thermal and visible images. The results of this study have potential applications for Mars, where orbital thermal imaging might be used as a tool for evaluating constituent sedimentary processes on proposed alluvial fans.  相似文献   
138.
基于前人对无植物河道河相关系研究方法及研究成果,本文遵循仙农熵(Shannon Entropy)理论,利用最大熵原理和变分法,给出考虑植物因子影响的河相关系系数动态表达式,并利用室内物理模型试验所观测的数据对该公式进行敏感性分析和验证,得到比较满意的理论结果。  相似文献   
139.
140.
Alluvial channels arise through the interaction between morphology, hydraulics, and sediment transport, known as the ‘fluvial trinity’. Over relatively short timescales where climate and geology are fixed but discharge and sediment supply may vary, this process facilitates adjustments towards steady state, where the system oscillates around a mean condition. The relationship between changes in conditions and geomorphic response may be highly complex and nonlinear, especially in systems with multiple modes of adjustment. This study examines the adjustment of an erodible channel with fixed banks and a widely graded sediment mixture to successive increases in discharge. With each increase in discharge, components of the fluvial trinity adjusted towards a steady state. Particularly at relatively low discharges, adjustments were controlled by intrinsic thresholds and highlighted important morphodynamic processes. Notably, there was a strong interplay between channel morphology and sediment transport, and an effect whereby larger-than-average grains controlled channel deformation. These two processes occurred at the bar scale and were highly spatialised, which has two important implications: (1) reach-averaged representations of process provide only partial insight into morphodynamics; and (2) models of rivers that suppress these process feedbacks and size-dependent transport may not replicate morphodynamics that typically occur in field conditions. The experiments provide quantitative evidence for conceptual models describing exponential approaches towards steady state and the potential for transiency if disturbance frequency exceeds the recovery time. They also highlight how in natural rivers, particularly those with greater degrees of freedom for adjustment (notably, lateral adjustment and meandering), continuous changes in discharge may lead to nonlinear rather than steady-state behaviour. In these settings, more holistic analytical frameworks that embrace different aspects of the system are critical in understanding the direction, magnitude and timing of channel adjustments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号