首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   39篇
  国内免费   31篇
测绘学   11篇
大气科学   10篇
地球物理   115篇
地质学   80篇
海洋学   65篇
天文学   4篇
综合类   7篇
自然地理   31篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   13篇
  2019年   22篇
  2018年   7篇
  2017年   13篇
  2016年   8篇
  2015年   15篇
  2014年   9篇
  2013年   19篇
  2012年   7篇
  2011年   17篇
  2010年   18篇
  2009年   9篇
  2008年   16篇
  2007年   16篇
  2006年   7篇
  2005年   14篇
  2004年   9篇
  2003年   8篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   8篇
  1997年   9篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
排序方式: 共有323条查询结果,搜索用时 0 毫秒
101.
虚拟地形环境是一个由计算机生成的以视觉感受为主,包括听觉、触觉可感知的综合模拟系统.本文简要介绍了虚拟地形环境空间认知的相关理论,并在多感觉通道空间认知、交互性、空间认知功效影响因素等方面进行了探讨.  相似文献   
102.
Many rivers worldwide show converging sections where a characteristic limiting front for vegetation establishment on gravel bars is observed. An important conceptual model was advanced in 2006 by Gurnell and Petts, who demonstrated that for the convergent section of the Tagliamento River the downstream front of vegetation establishment can be explained by unit stream power. We introduce a theoretical framework based on 1D ecomorphodynamic equations modified to account for the biological dynamics of vegetation. We obtain the first analytical result explaining the position and river width where vegetation density is expected to vanish in relation to a characteristic streamflow magnitude and both hydraulic and biological parameters. We apply our model to a controlled experiment within a convergent flume channel with growing seedlings perturbed by periodic floods. For a range of timescales where hydrological and biological processes interact, we observe the formation of a front in the convergent section beyond which vegetation cannot survive, the location of which is explained by flow magnitude. This experiment confirms that the timescales of the involved processes and the unit stream power determine the existence and the position of the front within convergent river reaches, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
103.
Alluvial channel bed incision and bank widening have been reported in both the south‐western and south‐eastern US throughout the past century. Distinct regional differences in climate and landscape properties likely influence the rate of erosion. This study discusses regional differences in hydraulic driving forces and substrate resistance and tests the hypothesis that regional differences exist in average rates of channel incision, bank erosion, and knickpoint retreat. Specifically, we hypothesize that erosion rates are higher in south‐western US streams and reason that this is because of greater flood magnitudes and limited substrate resistance. A review of the literature documenting incision, bank erosion, and knickpoint retreat, however, indicates that intra‐regional differences are larger than inter‐regional differences and that average rates in the south‐western US are either statistically similar or less than the rates in parts of the south‐eastern US. This could either be a result of strong intra‐regional hydroclimatic and substrate variability or because average erosion rate may not be an appropriate metric for inter‐regional comparisons because of the variability between case studies associated with the field methods to measure erosion, duration of study period, and time since disturbance to the channel. Nevertheless, these findings provide a basis for future evaluations of the relative importance of different controls on driving and resisting forces in these and other landscapes characterized by rapid channel incision and arroyo formation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
104.
酒泉盆地油气勘探始于20世纪20年代,先后发现了老君庙、鸭儿峡、单北、白杨河等油田。盆地在中、新生代经历了早白垩世断陷盆地演化阶段和新生代前陆盆地演化阶段,为断拗叠置型盆地。断陷期的酒泉盆地下白垩统赤金堡组和下沟组为一套纹层状泥质白云岩和白云质泥岩,藻纹层比较发育,是优质的烃源岩。拗陷期盆地的快速沉降导致烃源岩快速成熟、高效生烃,为油气运移提供了动力,同时挤压逆冲对构造圈闭、油气运移通道的形成和储层物性的改善起着关键的作用,形成的窟窿山等多个正向构造带是油气富集的有利区带。青西凹陷存在低成熟、成熟、高成熟3类原油,低成熟原油仅分布于青西凹陷的下沟组上段至中沟组,成熟原油发生了大规模的运移,形成了柳沟庄、鸭儿峡—老君庙—石油沟油田,而深层高成熟原油没有大规模向中浅层运移,青西凹陷具有寻找高成熟原油的资源潜力。希望该研究成果可为青西凹陷下白垩统油气勘探提供经验与思路。  相似文献   
105.
The sedimentation in the Gulf of Cadiz (NE Atlantic Ocean) is significantly controlled by the Mediterranean Outflow Water (MOW). Along its pathway onto the continental slope, the MOW is canalized by contourite channels, some of them feeding gravity sandy channel-lobe depositional systems firstly recognized in previous study [Habgood et al., 2003. Deep-water sediment wave fields, bottom current sand channels and gravity flow channel-lobe systems: Gulf of Cadiz, NE Atlantic. Sedimentology 50(3), 483-510.].Using very high resolution acoustic data and cores, a detailed characterization and a new evolution pattern of these channel-lobe depositional systems is established. Complex internal geometry of the lobes shows several depositional units revealing a polyphase evolution of these systems, with a general progradation punctuated by retrogradation and avulsion phases. A gravity origin controlled by contouritic processes and climatic changes is demonstrated for the feeding and the evolution of these sandy channel-lobe depositional systems. Climate oscillations, via the MOW variations, act as a major forcing of the activity of the channel-lobe depositional systems during the Late Quaternary.  相似文献   
106.
Fine-grained fluvial residual channel infillings are likely to reflect systematic compositional changes in response to climate change, owing to changing weathering and geomorphological conditions in the upstream drainage basin. Our research focuses on the bulk sediment and clay geochemistry, laser granulometry and clay mineralogy of Late-glacial and Early Holocene River Meuse (Maas) unexposed residual channel infillings in northern Limburg (The Netherlands). We demonstrate that residual channel infillings register a systematic bulk and clay compositional change related to climate change on a 1–10 k-yr time-scale. Late-glacial and Holocene climatic amelioration stabilised the landscape and facilitated prolonged and intense chemical weathering of phyllosilicates and clay minerals due to soil formation. Clay translocation and subsequent erosion of topsoils on Palaeozoic bedrock and loess deposits increased the supply of smectite and vermiculite within River Meuse sediments. Smectite plus vermiculite contents rose from 30–40% in the Pleniglacial to 60% in the Late Allerød and to 70–80% in the Holocene. Younger Dryas cooling and landscape instability caused almost immediate return to low smectite and vermiculite contents. Following an Early Holocene rise, within about 5000 yr, a steady state supply is reached before 5 ka (Mid-Holocene). Holocene sediments therefore contain higher amounts of clay that are richer in high-Al, low-K and low-Mg vermiculites and smectites compared with Late (Pleni-)glacial sediments. The importance of clay mineral provenance and loess admixture in the River Meuse fluvial sediments is discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   
107.
Stream networks expand and contract through time, impacting chemical export, aquatic habitat, and water quality. Although recent advances improve prediction of the extent of the wetted channel network (L ) based on discharge at the catchment outlet (Q ), controls on the temporal variability of L remain poorly understood and unquantified. Here we develop a quantitative, conceptual framework to explore how flow regime and stream network hydraulic scaling factors co-determine the relative temporal variability in L (denoted here as the total wetted channel drainage density). Network hydraulic scaling determines how much L changes for a change in Q , while the flow regime describes how Q changes in time. We compiled datasets of co-located dynamic stream extent mapping and discharge to analyze all globally available empirical data using the presented framework. We found that although variability in L is universally damped relative to variability in Q (i.e., streamflow is relatively more variable in time than network extent), the relationship is elastic, meaning that for a given increase in the variability in Q , headwater catchments will experience greater-than-proportional increases in the variability of L . Thus, under anticipated climatic shifts towards more volatile precipitation, relative variability in headwater stream network extents can be expected to increase even more than the relative variability of discharge itself. Comparison between network extents inferred from the L -Q relationship and blue lines on USGS topographic maps shows widespread underestimation of the wetted channel network by the blue line network.  相似文献   
108.
Most road‐stream crossings over ephemeral channels are vulnerable to extreme hydrologic events. Ford stream crossings (FSCs) are usually dangerous for the road traffic during periods of high flow, in particular under flash flood conditions. The present paper analyzes the flood hazards on the Mediterranean coast in the Region of Murcia (south‐east Spain), affecting this type of road‐stream crossing over dry channels, according to hydraulic variables and bedload transport rates estimated for discharges at bankfull and flood‐prone stages. Under such conditions, the safety of people and vehicles was obtained using numerical models, developed by previous researchers; in particular, water levels and flow velocities across ford reaches were compared with different trend curves between water depths and corresponding critical velocities for children and adults, and for various prototype vehicles. Specifically, two approaches to assess this type of hazards were proposed: a specific Hydraulic Hazard Index and an algorithm for estimating the flood hazard from criteria of bed stability and bedload transport capacity (Flood Hazard at Fords, FHF). In addition, different exposure levels were established, using a Flood Vulnerability Index, based on the FHF, the road category, and the annual average daily traffic. The FHF model gave the best results with regard to the magnitude of the damage observed in recent flash floods for flow stages similar to those simulated. According to the danger thresholds established for this index, half‐bankfull flows represent here a high risk: 27.3% of FSCs for mini‐cars and 18.2% for large cars. At bankfull, the FHF exhibits very high values for mini‐cars (77.3% of FSCs) and for large passenger vehicles (50% of FSCs), while at the floodprone stage, extreme FHF values are reached for all kinds of vehicles at most of the ford crossings.  相似文献   
109.
Worldwide convectively accelerated streams flowing in downstream-narrowing river sections show that riverbed vegetation growing on alluvial sediment bars gradually disappears, forming a front beyond which vegetation is absent. We revise a recently proposed analytical model able to predict the expected longitudinal position of the vegetation front. The model was developed considering the steady state approximation of 1-D ecomorphodynamics equations. While the model was tested against flume experiments, its extension and application to the field is not trivial as it requires the definition of proper scaling laws governing the observed phenomenon. In this work, we present a procedure to calculate vegetation parameters and flow magnitude governing the equilibrium at the reach scale between hydromorphological and biological components in rivers with converging boundaries. We collected from worldwide rivers data of section topography, hydrogeomorphological and riparian vegetation characteristics to perform a statistical analysis aimed to validate the proposed procedure. Results are presented in the form of scaling laws correlating biological parameters of growth and decay from different vegetation species to flood return period and duration, respectively. Such relationships demonstrate the existence of underlying selective processes determining the riparian vegetation both in terms of species and cover. We interpret the selection of vegetation species from ecomorphodynamic processes occurring in convectively accelerated streams as the orchestrated dynamic action of flow, sediment and vegetation characteristics. © 2019 John Wiley & Sons, Ltd.  相似文献   
110.
For the appropriate management and restoration of rivers, isolated vegetation is often a practical means for improving stream habitat and ecology. The effect of a finite vegetation patch on flow and bed morphology in an open channel was investigated using laboratory experiments. The patch containing emergent and submerged vegetation was modeled using circular cylinders and located mid‐channel along a side wall. Several configurations of the patch and submergence ratio (i.e. water depth to the height of vegetation), and two flow conditions (i.e. below and above the sediment motion threshold) were considered. For flows below the sediment motion threshold, erosion occurred primarily on the opposite side of the patch and near the leading edge of the patch. The degree of scouring depth observed in both these regions was affected by the submergence ratio and it increased with the non‐dimensional flow blockage (i.e. the product of the patch density and width). In contrast, for flows above the sediment motion threshold, sediment accumulated within and around the patch due to a reduction in bed shear stress, which was strongly influenced by the flow blockage and the obstruction ratio (i.e. the ratio of patch width to channel width). The eroded area observed within the patch was consistent with the interior adjustment region where the deceleration and diversion of flow occurred through the patch. As the flow blockage increased or as the obstruction ratio decreased, the deposition rate within and behind the patch decreased. Furthermore, the deposition rate increased with an increase in the ratio of flow rate through the patch to total flow rate regardless of the submergence ratio. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号