首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   43篇
  国内免费   27篇
测绘学   144篇
大气科学   5篇
地球物理   73篇
地质学   15篇
海洋学   185篇
天文学   10篇
综合类   47篇
自然地理   27篇
  2022年   8篇
  2021年   8篇
  2020年   11篇
  2019年   21篇
  2018年   6篇
  2017年   17篇
  2016年   16篇
  2015年   34篇
  2014年   20篇
  2013年   65篇
  2012年   16篇
  2011年   10篇
  2010年   15篇
  2009年   16篇
  2008年   27篇
  2007年   29篇
  2006年   19篇
  2005年   19篇
  2004年   32篇
  2003年   27篇
  2002年   8篇
  2001年   20篇
  2000年   11篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   9篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1954年   1篇
排序方式: 共有506条查询结果,搜索用时 226 毫秒
291.
Successful development of geodetic satellite missions has aroused new interest in determining global and regional gravity field based on satellite data. Satellite altimetry data enable direct determination of the geoid over sea regions. In Egypt, where land and marine geophysical data are inadequate because of rough topography and economic reasons, the use of satellite altimetry data is of special importance. The northern Red Sea region has been selected as a site for case study of the current research, after applying spectral analysis to reveal near-surface structure, the residual geoid of the studied region shows a good correlation with the known geologic features. Moreover, satellite-based gravity data enhance small-scale features and agrees well with land and marine gravity data. Thus, geoid undulation and satellite gravity data can be a complementary source of data to determine near-surface and deep structures.  相似文献   
292.
In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed. G. García: On leave from Space Geodesy Laboratory, Applied Mathematics Department, EPS, University of Alicante, Alicante, Spain.  相似文献   
293.
Free-Air Anomalies (FAA) for the Norwegian marine area including some parts of the North Sea, the Norwegian Sea and the Barents Sea are computed from satellite altimetry data. A total of 84 cycles of ERS2 along-track data, 25 cycles of ENVISAT along-track data and high density ERS1 data during its geodetic mission are used. The new geopotential model from the Gravity Recovery and Climate Experiment (GRACE) mission, GGM02S (Tapely et al., 2005) is used to compute the long wavelength contributions of the geoid and the FAA. To correct data for mean dynamic topography, the available Levitus climatology model (Levitus and Boyer, 1994) is used. Corrected data are then used to compute along-track gradients in each cycle-pass to suppress the orbital and the atmospheric errors below the noise level of the altimeter. Resulted gradients are then stacked and the east-west and the north-south components of the deflection of verticals are computed where ascending and descending tracks meet each other. Finally, the inverse Vening-Meinesz formula is implemented on the gridded deflections to compute FAA. Results are then compared with available marine and airborne data. Standard deviations of ± 4.301 and ± 6.159 mGal in comparison with airborne and marine FAA were achieved. Thereafter, the derived anomalies are combined with marine and airborne FAA together with the land FAA to compute a fine resolution geoid for Norway and the surrounding marine areas. This geoid is evaluated over sea and land with the synthetic geoid (the geoid derived from the mean sea surface by subtracting the mean dynamic topography) and Global Positioning System (GPS)-levelling and the standard deviations of the differences are ± 20.9 and ± 12.8 cm respectively. ali.soltanpour@ntnu.no, hossein.nahavandchi@ntnu.no, kourosh.ghazavi@ntnu.no  相似文献   
294.
 The single- and dual-satellite crossover (SSC and DSC) residuals between and among Geosat, TOPEX/Poseidon (T/P), and ERS 1 or 2 have been used for various purposes, applied in geodesy for gravity field accuracy assessments and determination as well as in oceanography. The theory is presented and various examples are given of certain combinations of SSC and DSC that test for residual altimetry data errors, mostly of non-gravitational origin, of the order of a few centimeters. There are four types of basic DSCs and 12 independent combinations of them in pairs which have been found useful in the present work. These are defined in terms of the `mean' and `variable' components of a satellite's geopotential orbit error from Rosborough's 1st-order analytical theory. The remaining small errors, after all altimeter data corrections are applied and the relative offset of coordinate frames between altimetry missions removed, are statistically evaluated by means of the Student distribution. The remaining signal of `non-gravitational' origin can in some cases be attributed to the main ocean currents which were not accounted for among the media or sea-surface corrections. In future, they may be resolved by a long-term global circulation model. Experience with two current models, neither of which are found either to cover the most critical missions (Geosat & TOPEX/Poseidon) or to have the accuracy and resolution necessary to account for the strongest anomalies found across them, is described. In other cases, the residual signal is due to errors in tides, altimeter delay corrections or El Ni?o. (Various examples of these are also presented.) Tests of the combinations of the JGM 3-based DSC residuals show that overall the long-term data now available are well suited for a gravity field inversion refining JGM 3 for low- and resonant-order geopotential harmonics whose signatures are clearly seen in the basic DSC and SSC sets. Received: 15 January 1999 / Accepted: 9 September 1999  相似文献   
295.
The ERS-1, ERS-2 and Envisat series of satellite altimeters provide the only extensive datasets that could conceivably be usedto constrain ocean tide models in high latitudes. Their sun-synchronous sampling, however, severely limits theobservations of solar tides, especially the principal semidiurnal S2 constituent. The Munk–Cartwright response method is anatural choice when attempting to analyze sun-synchronous data. The present study examines various ways a response analysis might be implemented to extract tides from ERS data. Admittances expressed as simple linear or constant functions of frequency cansometimes improve estimates over standard parameterizations, especially if done in conjunction with a reasonably accurate priorsolution. Some form of regularization, such as ridge regression, is also shown to improve the estimates. The approach provesbeneficial in a test for the southern Indian Ocean tides. It offers some promise for regions otherwise void of usefulobservations.  相似文献   
296.
CryoSat-2卫星测高计划及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
作为欧空局地球探测计划的一项重要任务,Cryo Sat-2卫星于2010年携带着Ku波段SIRAL(干涉/合成孔径雷达高度计)发射升空。Cryo Sat-2任务的优势在于高精度地测量两极海冰厚度以及监测南极大陆和格陵兰冰盖的变化,同时92°的近极地轨道一定程度上填补了先前遥测卫星的高纬数据缺口。本文对Cryo Sat-2卫星的科学目标、科学需求、任务概况、仪器载荷以及数据产品等方面做了详细的介绍,重点强调了Cryo Sat-2的首要载荷SIRAL和数据校准,最后探讨了Cryo Sat-2在极地领域的应用。  相似文献   
297.
In this study, water level retrieval over the Brahmaputra river was done using different retracking algorithms for the 40 Hz waveform data of SARAL/AltiKa satellite. Water level was retrieved at 10 different locations of the river to evaluate the performance and accuracy of Ka band altimeter over the braided river system. Different retracking algorithms such as ice-1, ice-2, threshold, and beta parameter were used to retrieve water levels. A correlation and error analysis between the in-situ and satellite altimetry derived river levels was carried out for all the stations. Performance and accuracy analysis has established that water level can be retrieved with less than 40 cm root mean square error (RMSE) for most of the braided reaches of the river. The statistical analysis have found that Beta parameter algorithm has performed best in most of the cases amongst the different retracking algorithms used in this study. The water levels derived from 10 different locations were used to generate water surface elevation profiles for the monsoon and nonmonsoon periods. The water levels and the water surface profiles derived from satellite altimetry indicate the potential use of altimeters for the parameterization and calibration of river hydrological, hydrodynamic and sediment transport models.  相似文献   
298.
As a new remote sensing technology, the global navigation satellite system (GNSS) reflection signals can be used to collect the information of ocean surface wind, surface roughness and sea surface height. Ocean altimetry based on GNSS reflection technique is of low cost and it is easy to obtain large amounts of data thanks to the global navigation satellite constellation. We can estimate the sea surface height as well as the position of the specular reflection point. This paper focuses on the study of the algorithm to determine the specular reflection point and altimetry equations to estimate the sea surface height over the reflection region. We derive the error equation of sea surface height based on the error propagation theory. Effects of the Doppler shift and the size of the glistening zone on the altimetry are discussed and analyzed at the same time. Finally, we calculate the sea surface height based on the simulated GNSS data within the whole day and verify the sea surface height errors according to the satellite elevation angles. The results show that the sea surface height can reach the precision of 6 cm for elevation angles of 55° to 90°, and the theoretical error and the calculated error are in good agreement.  相似文献   
299.
针对传统的GNSS-IR海面高度监测方法信号分离不佳且精度有待提高的问题,提出结合小波变换和改进Burg算法的新型GNSS-IR海面高度反演模型。相比于传统的多项式拟合法,小波变换得到的SNR振荡项更加完整、精确。改进的Burg算法能有效抑制峰值偏移或谱分裂现象,提高谱分析精度。基于瑞典Onsala空间天文台提供的GNSS数据和验潮仪数据的实验结果表明,优化后的海平面测高模型的反演结果与验潮仪数据具有较高的一致性,相比于传统的GNSS-IR海面测高模型精度提高约20%。  相似文献   
300.
中国近海海平面变化特征分析   总被引:6,自引:1,他引:5       下载免费PDF全文
用经验正交函数分析方法,对中国近海14年多的测高海平面同化格网资料进行分析,给出了黄海、东海和南海各海平面变化主要主成分的空间变化和时间变化特征.用标准Morlet小波变换方法分析了各海区主成分时间变化序列的时频特征.分析结果表明,各主成分的空间分布特征与当地的海洋环流或洋流特征相对应.时频分析结果显示,中国近海海平面变化的显著周期主要为年周期信号.其次,黄海和东海还显示准2个月的非稳态信号,东海和南海具有较显著的半年周期信号,东海半年周期信号的能量不稳定.此外,在南海及台湾东部海域,首次发现存在较为显著的准540天周期信号,其动力学机制目前尚不明确.坎门和西沙验潮站资料的时频特征分析也验证了该信号的存在.最后本文给出了中国近海海平面在1993~2007年间的平均上升速率和其区域分布特征.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号