首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   17篇
  国内免费   29篇
测绘学   2篇
大气科学   89篇
地球物理   44篇
地质学   51篇
海洋学   59篇
综合类   2篇
自然地理   4篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   8篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   17篇
  2012年   3篇
  2011年   11篇
  2010年   9篇
  2009年   20篇
  2008年   10篇
  2007年   18篇
  2006年   13篇
  2005年   8篇
  2004年   7篇
  2003年   14篇
  2002年   13篇
  2001年   7篇
  2000年   9篇
  1999年   8篇
  1998年   11篇
  1997年   11篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1977年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有251条查询结果,搜索用时 765 毫秒
61.
重点介绍和讨论了中性条件下旋转扰动流体中边界层强迫不稳定及其相关的一些问题,阐述了旋转体系中切变驱动边界层不稳定的动力学特征。这些不稳定状态的研究在大气物理学、流体动力学、海洋学等多个领域中引起科学家极大的兴趣,近年来在实验和理论研究中都得到了不断的发展。意大利都灵大学基础物理系地球科学实验组通过水槽旋转实验方法,不断改变水槽启动或结束时的旋转运动速度,以及底部壁面粗糙度等要素,所得到的实验结果与SDBL理论非常一致。  相似文献   
62.
节理岩体的分维特征及其工程地质意义   总被引:4,自引:0,他引:4  
本文用分形理论,对节理网络分布和粗糙度曲线进行分形分析。结果表明,节理的空间分布和粗糙度曲线具自相似性;分维是一个表征岩体强度、岩体损伤程度、岩体质量及节理粗糙程度的几何参数,并可用于评价岩体稳定性、断裂体系活动性及划分风化卸荷带等。  相似文献   
63.
The Hortonian model of runoff flow which had been thought to be applicable in arid areas has previously been shown not to be valid, notably in Israel, where inverse relations have been observed between slope angle, and runoff discharge and slope erosion. The paper discusses laboratory experiments on simulated slope conditions in a rather arid environment. It is shown by rain simulation on granite grus that infiltration capacity is a function of rainfall intensity, slope angle and runoff discharge. The infiltration capacity f can equal the rainfall intensity beyond a critical distance x(m) so that discharge becomes constant. Debris covers affect runoff hydraulics, especially on poorly cohesive soils, and both slow downslope and upslope movements which correspond to the process of so-called runoff creep can occur. Coarse debris and grass covers, as roughness factors, induce hydraulic discontinuities and activate local turbulent flow and slope erosion. Instead of being merely protective elements these factors tend to catalyze the slope wash, in comparison with naked surfaces, if the Reynolds number of the flow exceeds a certain critical value.  相似文献   
64.
《国际泥沙研究》2020,35(2):171-179
One of the important issues in water transport and sewer systems is determining the flow resistance and roughness coefficient.An accurate estimation of the roughness coefficient is a substantial issue in the design and operation of hydraulic structures such as sewer pipes,the calculation of water depth and flow velocity,and the accurate characterization of energy losses.The current study,applies two kernel based approaches [Support Vector Machine(SVM) and Gaussian Process Regression(GPR)] to develop roughness coefficient models for sewer pipes.In the modeling process,two types of sewer bed conditions were considered:loose bed and rigid bed.In order to develop the models,different input combinations were considered under three scenarios(Scenario 1:based on hydraulic characteristics,Scenarios2 and 3:based on hydraulic and sediment characteristics with and without considering sediment concentration as input).The results proved the capability of the kernel based approaches in prediction of the roughness coefficient and it was found that for prediction of this parameter in sewer pipes Scenario 3 performed better than Scenarios 1 and 2.Also,the sensitivity analysis results showed that Dgr(Dimensionless particle number) for a rigid bed and w_b/y(ratio of deposited bed width,w_b,to flow depth,y) for a loose bed had the most significant impact on the modeling process.  相似文献   
65.
Drag Partition for Regularly-Arrayed Rough Surfaces   总被引:1,自引:0,他引:1  
Vegetation and other roughness elements distributed across a surface can providesignificant protection against wind erosion by extracting momentum from the flowand thereby reducing the shear stress acting at the surface. A theoretical model haspreviously been presented to specify the partition of drag forces for rough surfacesand to predict required vegetation density to suppress wind erosion. However, themodel parameters have not yet been constrained and the predictive capacity of themodel has remained uncertain. A wind-tunnel study was conducted to measure thedrag partition for a range of roughness densities and to parameterise the model inorder to improve its range of potential applicability. The drag forces acting on bothan array of roughness elements and the intervening surface were measured independentlyand simultaneously using new drag balance instrumentation. A detailed measure of thespatial heterogeneity of surface shear stresses was also made using Irwin sensors. Thedata agreed well with previous results and confirmed the general form of the model.Analysis of the drag partition confirmed the parameter definition = CR/CS(where CR and CS are roughness element and surface drag coefficients,respectively) and a constant proportional difference between the mean and maximumsurface shear stress was found. The results of this experiment suggest that the definitionfor m, the surface shear stress inhomogeneity parameter, should be revised, although thetheoretical and physical reasons for including this parameter in the model appear to bevalid. Best-fit values for m ranged from 0.53 to 0.58.  相似文献   
66.
Seafloor magnetotelluric (MT) data were collected at seven sites across the Hawaiian hot spot swell, spread approximately evenly between 120 and 800 km southwest of the Hawaiian-Emperor island chain. All data are consistent with an electrical strike direction of 300°, aligned along the seamount chain, and are well fit using two-dimensional (2D) inversion. The major features of the 2D electrical model are a resistive lithosphere underlain by a conductive lower mantle, and a narrow, conductive, ‘plume’ connecting the surface of the islands to the lower mantle. This plume is required; without it the swell bathymetry produces a large divergence of the along-strike and across-strike components of the MT fields, which is not seen in the data. The plume radius appears to be less than 100 km, and its resistivity of around 10 Ωm, extending to a depth of 150 km, is consistent with a bulk melt fraction of 5–10%.A seismic low velocity region (LVR) observed by Laske et al. [Laske, G., Phipp Morgan, J., Orcutt, J.A., 1999. First results from the Hawaiian SWELL experiment, Geophys. Res. Lett. 26, 3397–3400] at depths centered around 60 km and extending 300 km from the islands is not reflected in our inverse model, which extends high lithospheric resistivities to the edge of the conductive plume. Forward modeling shows that resistivities in the seismic LVR can be lowered at most to 30 Ωm, suggesting a maximum of 1% connected melt and probably less. However, a model of hot subsolidus lithosphere of 102 Ωm (1450–1500 °C) within the seismic LVR increasing to an off-swell resistivity of >103 Ωm (<1300 °C) fits the MT data adequately and is also consistent with the 5% drop in seismic velocities within the LVR. This suggests a ‘hot, dry lithosphere’ model of thermal rejuvination, or possibly underplated lithosphere depleted in volatiles due to melt extraction, either of which is derived from a relatively narrow mantle plume source of about 100 km radius. A simple thermal buoyancy calculation shows that the temperature structure implied by the electrical and seismic measurements is in quantitative agreement with the swell bathymetry.  相似文献   
67.
Bathymetry of the seafloor in the area in front of Ras El Bar coast, the characters of the seafloor sediments and the effects of protective structures on seafloor bathymetry were examined. Seafloor depths in front of Ras El Bar seawall ranged between 2 and 4 m. These depths, coupled with wave climate, result in waves breaking directly onto the wall and exerting high, dynamic pressures on the area at the structure’s toe. The sandy seafloor in front of the wall has been scoured. Sea water has undermined the wall causing removal of sediment, destabilization of its slope and the whole face of the wall has slipped. Toe protection in the form of a rocky apron is required to prevent such damage. West of the seawall, the constructed breakwater system has affected the bathymetry of the seafloor in the area. Shoaling and submerged spits have been formed in the shadow of each breakwater unit. The gaps between the breakwater units have attained deep depths and steep slopes. Scours and steep slopes adjacent to the head of the breakwater units have been recorded. Seaward of the breakwater system, deeper depths and gentle slopes characterize the seafloor. Offshore–onshore current and sediment movements toward the northeast is inferred from the configuration of the bottom contour lines.  相似文献   
68.
Secondary motions are commonly present in open channel flows. This study aims to investigate, both experimentally and analytically, time-mean characteristics of cellular secondary flows generated by longitudinal bedforms. Experiments were conducted in a tilting, rectangular flume with six different longitudinal bedforms, including alternate bed strips with different roughness heights and bed ridges of wavy and rectangular shapes. Various flows were sampled using a two-dimensional laser Doppler anemometer (LDA) and a one-dimensional ultrasonic Doppler velocimeter (UDV). Experimental results demonstrate secondary flows appearing basically in cellular fashion over the modeled longitudinal bedforms. It is also shown that the cellular structures can be described analytically with kinematic considerations. The discrepancies between theoretical and measurement results are discussed. An empirical relationship between maximum vertical velocity and bed configuration is finally proposed based on the experimental data.  相似文献   
69.
Land Surface Processes Experiment (LASPEX) was conducted over semi-arid region of western India in 1997. As a part of this program, wind and temperature observations were taken using slow as well as fast response sensors over a semi-arid station Anand (22°35′N, 72°55′E) situated in Gujarat state of India. Turbulent parameters such as drag coefficient and sensible heat flux were estimated using eddy correlation method and aerodynamic roughness length was estimated using wind profiles. The analysis has been carried out for the data representing summer, monsoon and winter seasons. It was found that the wind speed does not exceed 5 ms− 1 during the observational period considered in this study. Relationship of aerodynamic drag coefficient and roughness length with wind speed and stability has been investigated. Aerodynamic roughness length was greater in the stable conditions when the wind speed was low and it reduced drastically during convective conditions. The resulting values of aerodynamic roughness length and drag coefficient for the monsoon period agree well with values reported in literature over Indian subcontinent for homogeneous grass covered surfaces.  相似文献   
70.
The Louis scheme for calculating the vertical eddy fluxes within the atmospheric surface layer is improved by broadening the original assumptions. In our approach, the momentum and heat transfer roughness lengths (z0 and zT respectively) can be different, and z0 need not be negligibly small compared with the lowest height (z) in modelling. For these conditions, we choose more consistent wind and potential temperature profile forms, then derive new algorithms for calculating fluxes. Improvement is demonstrated for a wide range of z/L (L is the Obukhov length), z/z0 and z0 zT, by comparing these fluxes with those derived from a theoretical surface-layer model. The improved algorithms can be used in atmospheric modelling systems for more varied surfaces and a wide range of atmospheric stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号