Understanding suspended particulate matter (SPM) dynamics in coastal waters is crucial to assess changes in coastal sediment budgets and biogeochemical fluxes. SPM dynamics are subject to various physical and biological factors and processes such as, e.g. tidal currents and aggregation which can be enhanced by extracellular polymeric substances (EPS) that are produced by algae and bacteria. It is still unclear how the different factors and processes interact and together determine SPM dynamics. To unravel the interacting processes and factors, we propose a new distribution-based modeling approach. Based on the derivation of explicit equations for size distribution characteristics of SPM such as the average radius, we derived a model of reduced complexity characterized by low initialization and parameterization effort as well as low computational cost. The proposed 0D model includes the processes of aggregation and fragmentation due to shear, aggregation due to differential settling, deposition, resuspension and tidal exchange, and describes the evolution of the SPM concentration in the water column linked by the settling velocity to the change of the mass average radius of the aggregate distribution. A systematic parameter variation for critical bottom shear stress of erosion, the size of resuspended aggregates, the fractal dimension, the collision efficiency, and the aggregate strength has been performed and compared to observations in the back-barrier basin of Spiekeroog Island in the German Wadden Sea. This analysis confirms the hypothesis that in winter biological influences on SPM dynamics are smaller compared to summer. This is mainly reflected by a significant shift in the various parameters. We hence conclude that biological control mechanisms have a much more quantitative relevance for SPM dynamics than currently represented by state-of-the-art SPM transport models. 相似文献
The macrobenthos is important in benthic remineralization processes; it represents a trophic link and is also often used as a bio-indicator in monitoring programs. Variations of the environmental parameters strongly influence the structure of the macrobenthic communities in the marshes and since macrobenthos is the most important food item for marsh-visiting fish species in the Schelde, the variation in food resources can have a strong effect on the higher trophic level. The present study deals with the variation in macrobenthic communities in different habitats of intertidal marshes along the salinity gradient and the differences between the marsh creeks and the intertidal part of the estuary. The study measured density and species richness together with the biomass, and sampled a large intertidal channel and a smaller creek within five marshes along the salinity gradient of the Schelde estuary every six weeks between May and October in 2000. 相似文献