首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  国内免费   6篇
测绘学   1篇
大气科学   1篇
地球物理   9篇
地质学   6篇
海洋学   15篇
综合类   3篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有35条查询结果,搜索用时 93 毫秒
11.
Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.  相似文献   
12.
This paper presents a two-grid method for solving systems of partial differential equations modelling incompressible free flow coupled with porous media flow. This work considers both the coupled Stokes and Darcy as well as the coupled Navier-Stokes and Darcy problems. The numerical schemes proposed are based on combinations of the continuous finite element method and the discontinuous Galerkin method. Numerical errors and convergence rates for solutions obtained from the two-grid method are presented. CPU times for the two-grid algorithm are shown to be significantly less than those obtained by solving the fully coupled problem.  相似文献   
13.
We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent subgrid bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modeling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems.  相似文献   
14.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   
15.
Summary Two different spectral methods have recently been used to model the flow driven by harmonic loads in a Newtonian mantle with laterally variable viscosity. The first method, by Zhang and Christensen (1993), transforms the problem with a general three-dimensional viscosity into a series of standard spherically symmetric problems. A different approach has been chosen by Martinec et al. (1993). Their method is based on integral formulation of the problem. The solution, which corresponds to a minimum of the dissipative energy, is found by means of the gradient search. We have tested the efficiency and numerical behaviour of both methods. The results of our tests favour the former method which is found more accurate and significantly faster than the gradient algorithm.  相似文献   
16.
The role of waterjet pump is to generate thrust by increasing the flow head. Details of the flow inside waterjet pump are important when pump performance is of the main interest. However, in waterjet self-propulsion, pump induced effects are of the main interest rather than the details of the flow inside the pump. This permits simplification of pump models when using numerical methods for simulating the flow. In order to find a robust and yet accurate pump model suitable for Computational Fluid Dynamics based methods, models of different sophistication level are studied in this paper. First, a Sliding Mesh approach, which is capable of capturing the flow details, is validated against a set of cavitation tunnel measurements. Then a series of simpler models, i.e. Moving Reference Frame technique and three different body-force models, are studied and their results are compared to the ones obtained from the Sliding Mesh approach. The results indicate that one of the body-force models which takes the guide vanes as well as the impeller induced flow swirl into account has the best compromise between the robustness and accuracy among the investigated pump models.  相似文献   
17.
To improve the current understanding of the reduction of tsunami-like solitary wave runup by the pile breakwater on a sloping beach, we developed a 3D numerical wave tank based on the CFD tool OpenFOAM in this study. The Navier Stokes equations were applied to solve the two-phase incompressible flow, combined with an LES model to solve the turbulence and a VOF method to capture the free surface. The adopted model was firstly validated with existing empirical formulas for solitary wave runup on the slope without the pile structure. It is then validated using our new laboratory observations of the free surface elevation, the velocity and the pressure around a row of vertical slotted piles subjected to solitary waves, as well as the wave runup on the slope behind the piles. Subsequently, a set of numerical simulations were implemented to analyze the wave reflection, the wave transmission, and the shoreline runup with various offshore wave heights, offshore water depths, adjacent pile spaces and beach slopes. Finally, an improved empirical equation accounting for the maximum wave runup on the slope was proposed by taking the presence of the pile breakwater into consideration.  相似文献   
18.
In this paper, we address the transport of multi-disperse suspended sediment mixtures in open channels, via the use of the two-fluid model. To that end, we extend previously developed frameworks for the dilute and non-dilute transport of suspended sediment. Within the scope of the Reynolds-averaged Navier-Stokes (RANS) equations, these modeling frameworks comprise mass and momentum equations for both phases (water and sediment). Here, we calculate the distribution of total volumetric concentration of sediment using two approaches: (1) by considering the mixture as represented by a single size; we call this approach Partial two-fluid model for uniform sediments (PTFMU); and (2) by combining the volumetric concentration of the sediment corresponding to several particle size classes; we call this approach Partial two-fluid model for non-uniform sediments (PTFMNU). In the second approach, we propose a methodology for the computation of the overall velocity of the disperse phase as a function of the velocities of each size class. k-ε type closures to account for the turbulence in the carrier phase (water) are applied. We also consider the coupling between the two phases through the drag force. Velocities of the carrier and disperse phases, and concentrations for each sediment class size are numerically solved by integrating the differential equations over control volumes. In order to validate our models, we compare numerical results to experimental data of Einstein and Chien [H.A. Einstein, N. Chien, Effects of heavy sediment concentration near the bed on velocity and sediment distribution, MRD sediment series report, University of California, Berkley, 1955] and Taggart et al. [W.C. Taggart, C.A. Yermoli, S. Montes, A. Ippen, Effects of sediment size and gradation on concentration profiles for turbulent flow, Massachusetts Institute of Technology, 1972]. Results of mean velocity of the carrier phase are in close agreement with the experimental data. For the prediction of sediment concentrations, we observe that there is a difference in the results using the two approaches mentioned above. We additionally obtain values of the Schmidt number needed to improve the agreement between predictions of the distribution of suspended sediment and the experimental data, and discuss the effect of sediment size and increasing sediment concentration on the values of the Schmidt number.  相似文献   
19.
We develop an efficient and versatile numerical model for carrying out high-resolution simulations of turbulent flows in natural meandering streams with arbitrarily complex bathymetry. The numerical model solves the 3D, unsteady, incompressible Navier-Stokes and continuity equations in generalized curvilinear coordinates. The method can handle the arbitrary geometrical complexity of natural streams using the sharp-interface curvilinear immersed boundary (CURVIB) method of Ge and Sotiropoulos (2007) [1]. The governing equations are discretized with three-point, central, second-order accurate finite-difference formulas and integrated in time using an efficient, second-order accurate fractional step method. To enable efficient simulations on grids with tens of millions of grid nodes in long and shallow domains typical of natural streams, the algebraic multigrid (AMG) method is used to solve the Poisson equation for the pressure coupled with a matrix-free Krylov solver for the momentum equations. Depending on the desired level of resolution and available computational resources, the numerical model can either simulate, via direct numerical simulation (DNS), large-eddy simulation (LES), or unsteady Reynolds-averaged Navier-Stokes (URANS) modeling. The potential of the model as a powerful tool for simulating energetic coherent structures in turbulent flows in natural river reaches is demonstrated by applying it to carry out LES and URANS in a 50-m long natural meandering stream at resolution sufficiently fine to capture vortex shedding from centimeter-scale roughness elements on the bed. The accuracy of the simulations is demonstrated by comparisons with experimental data and the relative performance of the LES and URANS models is also discussed.  相似文献   
20.
A VOF-based numerical model for breaking waves in surf zone   总被引:2,自引:0,他引:2  
This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and (he k-s equations for turbulence kinetic energy k and turbulence dissipation rate e. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号