首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   405篇
  国内免费   391篇
测绘学   21篇
大气科学   20篇
地球物理   491篇
地质学   1091篇
海洋学   95篇
天文学   3篇
综合类   35篇
自然地理   22篇
  2024年   1篇
  2023年   14篇
  2022年   29篇
  2021年   59篇
  2020年   58篇
  2019年   64篇
  2018年   66篇
  2017年   44篇
  2016年   60篇
  2015年   65篇
  2014年   76篇
  2013年   82篇
  2012年   93篇
  2011年   109篇
  2010年   102篇
  2009年   116篇
  2008年   85篇
  2007年   97篇
  2006年   89篇
  2005年   84篇
  2004年   75篇
  2003年   73篇
  2002年   45篇
  2001年   44篇
  2000年   25篇
  1999年   34篇
  1998年   21篇
  1997年   14篇
  1996年   16篇
  1995年   13篇
  1994年   10篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有1778条查询结果,搜索用时 15 毫秒
31.
Waterfront retaining walls supporting dry backfill are subjected to hydrostatic pressure on upstream face and earth pressure on the downstream face. Under seismic conditions, if such a wall retains a submerged backfill, additional hydrodynamic pressures are generated. This paper pertains to a study in which the effect of earthquakes along with the hydrodynamic pressure including inertial forces on such a retaining wall is observed. The hydrodynamic pressure is calculated using Westergaard's approach, while the earth pressure is calculated using Mononobe-Okabe's pseudo-static analysis. It is observed that when the horizontal seismic acceleration coefficient is increased from 0 to 0.2, there is a 57% decrease in the factor of safety of the retaining wall in sliding mode. For investigating the effect of different parameters, a parametric study is also done. It is observed that if φ is increased from 30° to 35°, there is an increase in the factor of safety in the sliding mode by 20.4%. Similar observations were made for other parameters as well. Comparison of results obtained from the present approach with [Ebeling, R.M., Morrison Jr, E.E., 1992. The seismic design of waterfront retaining structures. US Army Technical Report ITL-92-11. Washington DC] reveal that the factor of safety for static condition (kh=0), calculated by both the approaches, is 1.60 while for an earthquake with kh=0.2, they differ by 22.5% due to the consideration of wall inertia in the present study.  相似文献   
32.
本文介绍了土钉墙在陕西省人民医院门急诊医技大楼基坑支护中的应用,简述了工程设计方法,总结了施工经验,并对基坑支护体系变形观测结果进行了分析  相似文献   
33.
双层局部开孔板沉箱对波浪反射的理论研究   总被引:1,自引:0,他引:1  
提出了一种用于研究由双层开孔板和一个不透水后板的开孔结构对斜向波反射率的理论分析方法。整个流域被分成三个子域,在每个子域内应用特征函数展开法以得到该域内包含未知展开系数的势函数的表达式,在速度势的展开中,考虑了非传播模态波浪的影响。通过匹配开孔板处的边界条件可以求解待定的展开系数,继而求解双层开孔板防波堤结构对斜向波的反射率。数值计算结果与试验结果进行了比较,符合较好。并进一步讨论了几个重要因素对反射系数的影响。  相似文献   
34.
Stability is always the most important problem after high slope was excavated. The study analyzed the stress and strain inside the slope by Finite Element Method (FEM) and carried through stress distribution and failure zone, then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition, so the designed retaining wall was put forward which makes the slope stable.  相似文献   
35.
Peptidoglycan (PG) is a biopolymer found exclusively in the cell wall of bacteria. Recent chemical analysis of particulate organic matter suggests that a major amount of the muramic acid, an amino sugar present only in PG, could not be accounted for in terms of bacterial cells (Benner and Kaiser, 2003); however, data on particulate PG is quite sparse. In the present study, conducted in 1996, the PG was examined at 5 sampling sites in the northwestern Pacific Ocean, and in natural seawater cultures. Particulate PG, which was concentrated using a 96-well filtration plate equipped with Durapore filters (pore size, 0.22 μm), was measured by the silkworm larvae plasma (SLP) assay. The PG concentration generally decreased with depth and correlated significantly with bacterial abundance throughout the entire water column. However, the ratio of particulate PG to bacterial abundance varied with depth. The average ratio was 0.61 ± 0.53 (average ± SD, n = 40) between 50 and 2000 m, which agreed with the bacterial cellular PG content from 0.63 to 1.1 fg cell−1 obtained in seawater cultures. On the other hand, the ratios of PG to bacteria from the surface to 50 m (3.7 ± 2.6, n = 29) and below 2,000 m (2.1 ± 1.7, n = 7) were significantly higher than that between 50 and 2,000 m. These results may suggest that, in the surface and deep layers, a significant fraction of particulate PG was present in bacterial detritus, whereas this fraction was reduced in the middle layer.  相似文献   
36.
In this paper, the calculating charts and formulae about wave pressure on the breast wall are derived with seven parameters on the basis of physical model study. The verification shows that the charts agree with the example, and are adopted in the Specifications of Fishery Harbours Breakwater by the Ministry of Agricultures.  相似文献   
37.
An Approach to Stability Analysis of Embedded Large-Diameter Cylinder Quay   总被引:3,自引:3,他引:3  
WANG  Yuanzhan 《中国海洋工程》2002,16(3):383-393
The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used in port, coastal and off-shore works. The method for stability analysis of the large-diameter cylinder structure, especially for stability analysis of the embedded large-diameter cylinder structure, is an important issue. In this paper, an idea is presented that is, em-bedded large-diameter cylinder quays can be divided into two types, i.e. the gravity wall type and the cylinder pile wall type. A method for stability analysis of the large-diameter cylinder quay of the cylinder pile wall type is developed and a method for stability analysis of the large-diameter cylinder quay of the gravity wall type is also proposed. The effect of sig-nificant parameters on the stability of the large-diameter cylinder quay of the cylinder pile wall type is investigated through numerical calculation.  相似文献   
38.
Gerald Müller   《Ocean Engineering》2007,34(11-12):1786-1789
Wave run-up, and flow visualization experiments were conducted with a 1:2 sloped sea wall model. The visualization experiments gave an overview of flow fields in reflected, non-breaking conditions. Maximum particle velocities were found to be significantly smaller than suggested in the literature. Downrush produced a fast sheet flow, extending down to the toe of the sea wall. This created a ‘reverse’ breaker during the retreat of the initially non-breaking wave, which explains the high-energy dissipation rates for non-breaking waves reported in the literature. Embankments may therefore be exposed to wave impact pressures in areas up to 1.18H0 below MWL.  相似文献   
39.
This work, which was largely a fruit of China's national marine hazard mitigation service, explicitly reveals the major mechanism of sea-dike failure during wave overtopping. A large group of wave-flume experiments were conducted for sea dikes with varying geometric characteristics and pavement types. The erosion and slide of the landward slope due to the combined effect of normal hit and great shear from overtopping flows was identified the major trigger of the destabilization of sea dikes. Once the intermittent hydrodynamic load and swash caused any deformation (bump or dent) of the pavement layer, pavement fractions (slabs or rubble) on the slope started to be initiated and removed by the water. The erosion of the landward slope was then gradually aggravated followed by entire failure within a couple of minutes. Hence, the competent velocity would be helpful evaluate the failure risk if as well accounted in standards or criteria. However, the dike top was measured experiencing the largest hydrodynamic pressure with a certain cap while the force on the wall increased rapidly as the overtopping intensity approached the dike-failure threshold. The faster increase of the force on the wall than on the landward slope yielded the sequencing of loads reaching hypothetic limits before failure as: dike top – top-mounted wall – landward slope. Therefore, beside the slide failure, the fatigue damage due to the instantaneous hydrodynamic impact might be another mechanism of the dike failure, which did not appear in the experiment but should be kept in mind. Instead of the widely adopted tolerable overtopping rate, a 0.117–0.424 m3/(m s) range of overtopping discharge and a 10 m/s overtopping velocity for the failure risk of typical sea dikes along China's coastlines were suggested, which enables the possible failure risk prediction through empirical calculations. The failure overtopping rate was identified strongly dependent on the pavement material, the landward slope and the dike-mounted wall but showed little variation with the width of the dike top. The flat concrete pavement and gentle landward slopes are suggested for the dike design and construction. For given configurations and hydrodynamic conditions in the experiment, the dike without the wall experienced less overtopping volume than those with the 1-m top-mounted wall. Meanwhile, the remove of the wall increased the failure overtopping rate, which means a certain increase of the failure criterion. Thus, care must be taken to conclude that the dike-mounted wall seems not an entirely appropriate reinforcement for the stability and safety of coastal protections. This should be further checked and discussed by researchers and engineers in the future.  相似文献   
40.
This paper presents the application of the Improved Meshless Local Petrov Galerkin method with Rankine source (Sriram and Ma, 2012) Sriram and Ma (2012) for wave interaction with porous structure model. The mathematical model is based on a unified governing equation that incorporates both pure fluid and porous region. The porous flow model is based on the empirical resistance coefficients. The interface between the pure fluid and porous region is numerically treated using background nodes having the porosity information and interpolated over the particle using simplified finite difference interpolation method. The model is validated using the available experimental results for wave damping over the permeable bed. The developed model is used to analyse the different shape of the seawall such as flaring shaped seawall, recurve wall and vertical wall. Then the validated model is used for analysing the overtopping amount due to the effect of porous layer in-front of the different sea wall profile. Numerical expression for overtopping amount has been provided for the different configurations from the numerical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号