首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
大气科学   1篇
海洋学   21篇
综合类   1篇
  2019年   5篇
  2017年   5篇
  2016年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1990年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method.  相似文献   
12.
13.
A surface panel method is employed for the thin boundary layer calculation of heavily loaded marine propellers in steady state conditions. Employing the surface panel method, known as the “Morino Method”, the flow field around the propeller is represented by an unknown potential. The majority of the flow field is governed by the potential theory while the viscosity is assumed to be largely confined to thin shear layer on the propeller surface. The boundary layer calculations are performed by using Cebeci-Smith two dimensional model and the local skin friction coefficients and blowing velocities are obtained along the pre-computed on-body streamlines. It is shown that the prediction of torque of the propeller is improved when the boundary layer calculations are used instead of the boundary layer corrections based on the formulae established for the flat plates.  相似文献   
14.
A two-frame particle image velocimetry (PIV) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from 0° to 80°, 150 instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors in the propeller wake region. The slipstream contraction occurs in the near-wake region up to about X/D=0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.  相似文献   
15.
In view of environmental concerns, there is increasing demand to optimize the ships for the actual operating condition rather than for calm water. Now, in order to apply this for propeller design, a first step would be to study the effects of waves on propeller operation. Therefore, the aim of this paper is to identify and quantify the effect of various factors affecting the propeller in waves. The performance of KVLCC2 propeller in the presence of three different waves has been compared with calm water performance. Changes in performance in terms of cavitation, pressure pulses, and efficiency have been studied. Significant increase in pressure pulses has been observed due to wake change in waves even though cavitation did not show any significant change. An analysis using cavitation bucket diagram in different wave conditions indicates that a propeller optimized for calm water wake may perform much worse in the presence of waves. Therefore, having wake variation at least in critical wave conditions (where the wavelength is close to ship length) in addition to calm water wake could be very useful to ensure that the propeller performs equally well in the presence of waves.  相似文献   
16.
The characteristics of the flow over the rudder’s pintle gap are investigated by using the particle image velocimetry (PIV) technique. The propeller and rudder models are scaled down to 1/28.5. Highly accelerated leakage outflows are separated at the discontinuities of the gap and generate strong cavitation at the suction side of the rudder. In the rudder and propeller configuration, the propeller wake sheet ahead of the gap entrance region starts to induce leakage flow over the lower pintle gaps of the suction side. The gap flow has a velocity magnitude as high as 0.4U0 in the high leakage flow condition, where the wake sheet locates over the gap entrance. The cross-flow of the propeller wake sheet interferes the gap entrance region and triggers gap cavitation. As the propeller wake sheet moves downstream and weakens, the gap flow velocity decreases over the gap entrance.  相似文献   
17.
In practical maritime conditions, ship hulls experience heave motion due to the action of waves, which can further drive the ship’s propellers to oscillate relative to the surrounding water. In order to investigate the motion of a propeller working behind a surface vessel sailing in waves, a numerical simulation is conducted on a propeller impacted by heave motion in cavitating flow using the Reynolds-averaged Navier-Stokes (RANS) method. The coupling of the propeller’s rotation and translation is fulfilled using equations of motion defined for this purpose. The heave motion is simplified as a periodic motion based on a sinusoidal function. The numerical transmission of information from the unsteady flow field is achieved using the overset grid approach. In this manner, the unsteady thrust coefficient and torque coefficient of propellers in different periods of heave motion are analyzed. A comparative study is implemented on the unsteady cavitation performance and wake characteristics of propeller. With the propeller’s heave motion, the flow field non-uniformity constantly changes the load on the propeller during each revolution period and each heaving period, the propeller load and the wake field are closely related to the variation of heave motion period. The results obtained from the numerical simulation are expected to serve as a useful theoretical reference for the numerical analysis of a propeller in a heave motion.  相似文献   
18.
The understanding and the accurate assessment of propeller loads in realistic operative scenario, both design and off-design conditions, is of paramount importance to design low emission and comfortable ships, fulfilling the requirements of structural integrity of the propulsion system, safety and continuity of operations at sea. To this purpose, a deeper characterization of the propeller functioning, in terms of averaged and fluctuating loads, can be attained by means of the quantification of the single blade loads. In this work, a novel set up that allows to monitor the loads developed by a single blade was implemented on a free running, self propelled maneuvering model with the aim to investigate in details the hydrodynamic interactions between the spatially non-homogeneous and time-variant wake of the hull and the propeller and a complete characterization of its performance. This preliminary work introduces the experimental setup and provides a preliminary overview of the results relative to straight ahead motion.  相似文献   
19.
The existing propulsor that can perform both propulsion and maneuvering along axis of rotation is propeller/rotor for a helicopter. Helicopter propellers when maneuvering increase or decrease their blades’ pitch cyclically to create imbalanced thrust and hence maneuvering force/torque. A “maneuverable propeller” was developed and its performance on both maneuvering and propulsion is assessed. The “maneuverable propeller” is an alternative of the existing helicopter rotors. The novelty of this propulsor is that the imbalanced thrust force/torque is created by cyclically increasing or decreasing the angular speed of their blades relatively to the hubs/shafts, to provide the desired maneuvering torque. This maneuverable propeller is hence defined as the Cyclic Blade Variable Rotational Speed Propeller (CBVRP). One of the best advantages is that the maneuvering torque created by the “maneuverable propeller” is much higher, about 5 times of the shaft torque of the same propeller at thrust only mode. The “maneuverable propeller” has wide applications for both surface ships and underwater vehicles that require high maneuverability for cruising inside the narrow passage.  相似文献   
20.
The paper presents the results of the application of a new hybrid URANS-LES method for the investigations of the ship wake behind the tanker KVLCC2. The switching between URANS and LES models is based on the ratio between the turbulence scale and the cell size of the mesh. Ship resistance, fields of the axial velocity and turbulent kinetic energy in the propeller plane are calculated and compared with measurements. Much attention is paid to the analysis of the unsteady velocities, their PDF distributions and spectra. Numerical analysis shows that the instantaneous velocities deviate substantially from their mean values which are usually used as the estimated velocities in modern engineering methodologies. The thrust variation in the unsteady wake is more than twice as large as that in the time averaged (frozen) wake. The results of the present study point out that the unsteadiness in the wake behind full ships can be very large and should be taken into account when propulsion and unsteady loadings are determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号