首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   31篇
  国内免费   59篇
测绘学   21篇
大气科学   62篇
地球物理   178篇
地质学   106篇
海洋学   133篇
天文学   3篇
综合类   10篇
自然地理   36篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   9篇
  2020年   11篇
  2019年   18篇
  2018年   2篇
  2017年   18篇
  2016年   13篇
  2015年   14篇
  2014年   33篇
  2013年   25篇
  2012年   14篇
  2011年   35篇
  2010年   19篇
  2009年   36篇
  2008年   42篇
  2007年   35篇
  2006年   31篇
  2005年   25篇
  2004年   18篇
  2003年   16篇
  2002年   15篇
  2001年   12篇
  2000年   11篇
  1999年   22篇
  1998年   8篇
  1997年   8篇
  1996年   1篇
  1995年   3篇
  1994年   11篇
  1993年   10篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有549条查询结果,搜索用时 78 毫秒
81.
Many studies show that seagrass δ15N ratios increase with the amount of urbanization in coastal watersheds. However, there is little information on the relationship between urbanization and seagrass δ15N ratios on a global scale. We performed a meta-analysis on seagrass samples from 79 independent locations to test if seagrass δ15N ratios correlate with patterns of population density and fertilizer use within a radius of 10–200 km around the sample locations. Our results show that seagrass δ15N ratios are more influenced by intergeneric and latitudinal differences than the degree of urbanization or the amount of fertilizer used in nearby watersheds. The positive correlation between seagrass δ15N ratios and latitude hints at an underlying pattern in discrimination or a latitudinal gradient in the 15N isotopic signature of nitrogen assimilated by the plants. The actual mechanisms responsible for the correlation between δ15N and latitude remain unknown.  相似文献   
82.
We tested the capacity of Ulva lactuca to mark N sources across large marine areas by measuring variation in its δ15N at several sites in the Gulf of Gaeta. Comparisons were made with the macroalga Cystoseira amentacea. Variation of δ15N values was assessed also in the coastal waters off the Circeo Natural Park, where U. lactuca and C. amentacea were harvested, as these waters are barely influenced by human activities and were used as reference site. A small fragment from each frond was preserved before deployment in order to characterize the initial isotopic values. After 48 h of submersion, U. lactuca was more responsive than C. amentacea to environmental variation and δ15N enrichment in the Gulf of Gaeta was observed. The spatial distribution of δ15N enrichment indicated that different macro-areas in the Gulf were affected by N inputs from different origins. Comparison of the δ15N values of fragments taken from the same transplanted frond avoided bias arising from natural isotopic variability.  相似文献   
83.
Human development of watersheds can change aquatic ecosystems via multiple pathways. For instance, human rural development may add nutrients to ecosystems. We used naturally occurring stable isotopes in stream food webs to investigate how land use affects stream ecosystems across a gradient of land development in the San Lorenzo watershed, California. Road density was used as a proxy for land development. We found that streams in watersheds with higher road densities had elevated concentrations of phosphate and nitrate. Furthermore, algal δ15N values increased as a function of nitrate concentration, but saturated at approximately 6‰. This saturating pattern was consistent with a two-source mixing model with anthropogenic and watershed sources, fit using Bayesian model fitting. In sites that had >2.6 km roads km−2, anthropogenic sources of N were estimated to represent >90% of the N pool. This anthropogenic N signal was propagated to stream consumers: rainbow trout (Oncorhynchus mykiss), signal crayfish (Pacifasticus leniusculus), and benthic invertebrate δ15N were positively correlated with algal δ15N. Even relatively low density rural human land use may have substantial impacts on nutrient cycling of stream ecosystems.  相似文献   
84.
85.
Post‐puerulus specimens of Jasus edwardsii (Hutton) have been successfully reared in the laboratory from the puerulus stage for periods of up to 12 months. The spiny lobsters were reared in concrete‐asbestos tanks measuring 2.4m × 37cm × 23cm. The tanks were supplied with a continuous flow of sea water and provided with constant aeration. Empty shells of paua (Haliotis iris Martyn) and rocks from the intertidal zone provided cover within the tanks.

Fresh mussel (Mytilus sp.) was preferred to all other foods tried in feeding experiments. The animals were fed every second day on opened mussels, and occasionally on fresh fish. The juveniles “grazed” actively on the calcareous algae (Corallina officinalis L.) present on the rocks.

The animals were extremely sensitive to pollution. To reduce pollution risks all sediments were removed from each tank, as the interstices between them were found to harbour uneaten food particles. Any uneaten foods were siphoned out every second day and each tank was thoroughly cleaned every six to eight weeks.

From a total of over 3,300 animals collected since November 1965, over 800 are presently being reared in the laboratory and various aspects of their ecology studied. The first step in raising larger adult sizes from juvenile stages in the laboratory is clearly possible.  相似文献   
86.
We used elemental carbon, nitrogen, phosphorus and hydrogen ratios (C/N, N/P and H/C) with total organic carbon (TOC) and total phosphorus (TP) as well as stable carbon and nitrogen isotopes (δ13C and δ15N) to investigate the source and depositional conditions of organic matter in sediments from Zeekoevlei, the largest freshwater lake in South Africa. Typical C/N (10–12), H/C ratios (≥1.7) and δ13Corganic values (−22 to −19‰) together with the increase in TOC concentration indicate elevated primary productivity in lower middle (18–22 cm) and top (0–8 cm) sections of the sediment cores. Seepage of nutrients from a nearby waste water treatment plant, rapid urbanization and heavily fertilized farming in the catchments are responsible for the increased productivity. Consistent with this, measured δ15Norganic values (∼11‰) indicate increased raw sewage input towards the top-section of the core. Although cyanobacterial blooms are evident from the low δ15N values (∼3‰) in mid-section of the core, they did not outnumber the phytoplankton population. Low N/P ratio (∼0) and high TP (100–2,200 mg l−1) support cyanobacterial growth under N limited condition, and insignificant input of macrophytes towards the organic matter pool. Dredging in 1983, caused sub-aerial exposure of the suspended and surface sediments, and affected organic matter preservation in the upper mid-section (12–14 cm) of the core.  相似文献   
87.
88.
89.
微观孔隙作为泥质岩的有效储集空间,其孔隙结构参数是作为气藏评价及资源量估算的重要依据。本文应用氮气吸附法(NAM)、核磁共振法(NMR)、氩离子抛光及场发射扫描电镜(AIP-FESEM)研究川西须五段泥质岩微观孔隙特征,结果表明:1氩离子抛光及场发射扫描电镜在表征微观孔隙形态与类别时有一定优势,但定量表征孔隙参数时,受图像二值化阈值的影响,表征结果偏差较大,可结合氮气吸附法来定量表征其孔径大小;2核磁共振受岩石骨架影响小,能够更精细反映岩石的物性条件,可定量计算孔隙度与可动流体饱和度,但对样品的孔隙形态反映较差;3综合上述三种方法,在须五段泥质岩中可识别出一定量的纳米级中、大孔,孔径大多介于几十纳米到几百纳米之间,孔隙连通性差,孔隙度主要介于2.3%~7.4%之间,孔隙类型以粒间孔、晶间孔最发育,有机孔隙、微裂缝次之,粒内孔隙最不发育。总体而言,融合了三种技术方法能更精确、更全面地反映泥质岩孔隙结构特征,能得到更完善的储层孔隙结构参数,在定量表征泥质岩孔隙结构中具有广泛的应用前景。  相似文献   
90.
Macroalgal blooms of Hypnea musciformis and Ulvafasciata in coastal waters of Maui only occur in areas of substantial anthropogenic nutrient input, sources of which include wastewater effluent via injection wells, leaking cesspools and agricultural fertilizers. Algal δ15N signatures were used to map anthropogenic nitrogen through coastal surveys (island-wide and fine-scale) and algal deployments along nearshore and offshore gradients. Algal δ15N values of 9.8‰ and 2.0-3.5‰ in Waiehu and across the north-central coast, respectively, suggest that cesspool and agricultural nitrogen reached the respective adjacent coastlines. Effluent was detected in areas proximal to the Wastewater Reclamation Facilities (WWRF) operating Class V injection wells in Lahaina, Kihei and Kahului through elevated algal δ15N values (17.8-50.1‰). From 1997 to 2008, the three WWRFs injected an estimated total volume of 193 million cubic meters (51 billion gallons) of effluent with a nitrogen mass of 1.74 million kilograms (3.84 million pounds).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号