首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   31篇
  国内免费   59篇
测绘学   21篇
大气科学   62篇
地球物理   178篇
地质学   106篇
海洋学   133篇
天文学   3篇
综合类   10篇
自然地理   36篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   9篇
  2020年   11篇
  2019年   18篇
  2018年   2篇
  2017年   18篇
  2016年   13篇
  2015年   14篇
  2014年   33篇
  2013年   25篇
  2012年   14篇
  2011年   35篇
  2010年   19篇
  2009年   36篇
  2008年   42篇
  2007年   35篇
  2006年   31篇
  2005年   25篇
  2004年   18篇
  2003年   16篇
  2002年   15篇
  2001年   12篇
  2000年   11篇
  1999年   22篇
  1998年   8篇
  1997年   8篇
  1996年   1篇
  1995年   3篇
  1994年   11篇
  1993年   10篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有549条查询结果,搜索用时 437 毫秒
151.
152.
With anthropogenic changes, the structure and quantity of nitrogen nutrients have changed in coastal ocean, which has dramatically influenced the water quality. Water quality modeling can contribute to the necessary scientific grounding of coastal management. In this paper, some of the dynamic functions and parameters of nitrogen were calibrated based on coastal field experiments covering the dynamic nitrogen processes in Jiaozhou Bay (JZB), including phytoplankton growth, respiration, and mortality; particulate nitrogen degradation; and dissolved organic nitrogen remineralization. The results of the field experiments and box model simulations showed good agreement (RSD = 20% ± 2% and SI = 0.77 ± 0.04). A three-dimensional water quality model of nitrogen (3DWQMN) in JZB was improved and the dynamic parameters were updated according to field experiments. The 3DWQMN was validated based on observed data from 2012 to 2013, with good agreement (RSD = 27 ± 4%, SI = 0.68 ± 0.06, and K = 0.48 ± 0.04), which testifies to the model's credibility.  相似文献   
153.
Stress state of microalgal cells is caused under unfavorable conditions such as disordered light regime and depleted nitrogen. The stress state can impair photosynthetic efficiency, inhibit cell growth and result in the accumulation of triacylglycerol(TAG) from protective mechanisms. Continuous light or nitrogen starvation was applied on microalgae and performed effectively on inducing TAG production. To evaluate the light regime effect on inducing TAG production, the effect of different light regimes on nitrogen-starved Isochrysis zhangjiangensis was investigated in this work. The continuous light and nitrogen starvation elevated TAG content of biomass by 73% and 193%, respectively. Furthermore, the TAG accumulation of I. zhangjiangensis cell under nitrogen starvation decreased under aggravated stress from continuous illumination. Our results demonstrated that culturing the cells with 14 L: 10 D light regime under nitrogen starvation is the optimal mode to achieve maximal accumulation of TAG. A recovery in light regime was necessary for I. zhangjiangensis cultivation.  相似文献   
154.
Marine stable nitrogen isotope containing much key biogeochemical information, is an important way in identifying marine nitrogen sources and understanding the marine nitrogen cycles. These isotopic signals can be preserved in marine sediments and used to trace the marine biogeochemical cycles and environment changes during geological history. Studies in recent decades have illustrated the key role of nitrogen fixation and denitrification. Because of the spatiotemporal variability and the complexity of ocean processes and nitrogen sources in the marine environment, we need to combine the modern observations with geological records, integrate oceanography, biology, and geology, and consider the hydrological environment, geological processes and climate changes, to understand the coupling between the ocean nitrogen cycle, climate and environmental changes.  相似文献   
155.
156.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) were studied approximately weekly during spring and summer 2003 and 2004 in the Gulf of Trieste (northern Adriatic Sea) in order to track the temporal variations and differences between two years. In parallel, particulate organic carbon (POC) and particulate nitrogen (PN), phytoplankton biomass (chlorophyll a), and N and P nutrients were monitored. All studied parameters, especially N and P nutrients and chlorophyll a, showed higher concentrations and larger variability in spring 2004. As a consequence the macroaggregates were produced in late spring 2004. The C and N isotope composition of POM was not directly linked to phytoplankton biomass dynamics. The δ13CPOC values covaried with temperature. In 2004, δ13CPOC variations followed the δ15NPN values as well as the δ13CDIC values which were probably more dependent on the photosynthetic use of 12C. Variations in δ15NPOM values were most probably the consequence of variations in N nutrient sources used in phytoplankton assimilation. The significant correlation between δ15NPN values and nitrate concentrations in 2004 implies intense nitrate assimilation in the presence of higher nitrate concentration. This suggests nitrate as the key nutrient in the »new primary production«, later producing macroaggregates with a mean δ13C and δ15N values of − 19‰ and 5‰, respectively. A low fractionation factor ε, < 1‰, lower than that reported in other marine and lacustrine systems, was found probably to be a consequence of distinct phytoplankton species, i.e. several classes of autotrophic nanoflagellates, and specific growth conditions present in the Gulf of Trieste. The tentative use of C isotope composition of POM revealed a higher contribution of allochthonous organic matter in 2004 compared to 2003 due to higher riverine inflow.  相似文献   
157.
The transfer of material through the twilight zone of the ocean is controlled by sinking particles that contain organic matter (OM) and mineral ballast. During the MedFlux field program in the northwestern Mediterranean Sea in 2003, sinking particulate matter was collected in time series (TS) and settling velocity (SV) traps and analyzed for amino acids, lipids, and pigments (along with ballast minerals) [Lee, C., Armstrong, R.A., Wakeham, S.G., Peterson, M.L., Miquel, J.C., Cochran, J.K., Fowler, S.W., Hirschberg, D., Beck, A. Xue, J., 2009b. Particulate matter fluxes in time series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Research II, this volume [doi:10.1016/j.dsr2.2008.12.003]]. The goal was to identify how organic chemical compositions of sinking particles varied as a function of their in-situ settling velocity. The TS record was used to define the biogeochemical character and temporal pattern in flux during the period of SV trap deployment. Temporal variations in organic and mineral compositions are consistent with particle biogeochemistry being driven by the seasonal succession of phytoplankton. Spring diatom bloom conditions led to a high flux of rapidly sinking aggregates and zooplankton fecal matter; summer oligotrophy followed and was characterized by a higher proportion of slowly sinking phytoplankton cells. Bacterial degradation is particularly important during the low-flux summer period. Settling velocity traps show that a large proportion of particulate organic matter sinks at 200–500 m d−1. Organic compositions of this fast-sinking material mirrors that of fecal pellets and aggregated material that sinks as the spring bloom terminates. More-slowly sinking OM bears a stronger signature of bacterial degradation than do the faster-sinking particles. The observation that compositions of SV-sorted fractions are different implies that the particle field is compositionally heterogeneous over a range of settling velocities. Thus physical and biological exchange between fast-sinking and slow-sinking particles as they pass down the water column must be incomplete.  相似文献   
158.
在实验室内模拟研究了沙海蜇消亡过程中氮与磷的释放特征。模拟结果表明:沙海蜇消亡过程中向水体释放氮、磷可分为两个阶段,且氮的释放速率比磷高一个数量级。在沙海蜇消亡的初期阶段,水体中溶解态氮、磷和总氮、总磷的浓度迅速增高,氮可以达到其消亡过程中的最高浓度;在后期阶段,水体中溶解态氮和总氮的浓度不断下降,但水体中的磷在这一阶段达到消亡过程中的最高浓度碱性条件有利于氮的释放,酸性条件有利于磷的释放;盐度越高氮与磷的释放速率越小;温度对氮、磷的释放影响不大;水体中氮与磷含量越高,沙海蜇消亡的速度越慢,而且氮的浓度越高,氮与磷释放到水体中的速率就越慢。  相似文献   
159.
湖泊沉积物氮磷内源负荷模拟   总被引:75,自引:1,他引:75  
在对骆马湖沉积物及其间隙水物化性质、空间分布等分析基础上 ,在实验室控制的恒温静态条件下 ,模拟了软性富泥区柱状芯样在不同季节温度下的沉积物 水界面氮、磷交换过程。根据模拟不同温度下的柱状沉积物氮、磷释放速率及其代表时段下的物质释放量计算 ,以及应用孔隙水物质扩散模型进行的计算 ,全湖内源氮、磷负荷分别约为 ( 1 1 1 3.2± 71 .3)t/a和 ( 1 2 .5 0± 0 .95 )t/a,分别占骆马湖年氮、磷入湖量的 7.4%和 1 .2 %。沉积物中氮、磷含量差异大及铁含量较高可能是氮释放通量偏高和磷释放通量较小的主要因素。  相似文献   
160.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号