首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   175篇
  国内免费   399篇
测绘学   14篇
大气科学   205篇
地球物理   180篇
地质学   665篇
海洋学   122篇
天文学   13篇
综合类   37篇
自然地理   139篇
  2024年   2篇
  2023年   32篇
  2022年   34篇
  2021年   41篇
  2020年   34篇
  2019年   44篇
  2018年   37篇
  2017年   40篇
  2016年   50篇
  2015年   58篇
  2014年   79篇
  2013年   79篇
  2012年   78篇
  2011年   90篇
  2010年   48篇
  2009年   61篇
  2008年   73篇
  2007年   57篇
  2006年   56篇
  2005年   57篇
  2004年   45篇
  2003年   35篇
  2002年   35篇
  2001年   38篇
  2000年   34篇
  1999年   22篇
  1998年   24篇
  1997年   19篇
  1996年   16篇
  1995年   16篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1984年   3篇
  1983年   1篇
  1978年   2篇
  1954年   1篇
排序方式: 共有1375条查询结果,搜索用时 15 毫秒
911.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about -4.671μmol·m-2·s-1 to a maximum of 13.80μmol·m-2·s-1, mean net ecosystem exchange of CO2 flux was -2.0μmol·m-2·s-1 and 3.9μmol·m-2·s-1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (Ra:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m-2·a-1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m-2·a-1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   
912.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   
913.
During a 4-year period starting in July 1996 and using intervals ranging from 3 days to 4 years, four precise polar motion (PM) series have been compared to excitation by atmospheric angular momentum (AAM) augmented with oceanic angular momentum (OAM) data. The first three series (C03, C04 and Bulletin A) are multi-technique combinations generated by the International Earth Rotation and Reference Systems Service (IERS) and the fourth combined series (IGS00P02) is produced by the International GPS Service (IGS) using only GPS data. The IGS PM compared the best with the combined excitations of atmosphere and oceans (AAM+OAM) at all intervals, showing high overall correlation of 0.8–0.9. Even for the interval of only three days, the IGS PM gave a significant correlation of about 0.6. Moreover, during the interval of February 1999 – July 2000, which should be representative of the current precision of the IGS PM, a significant correlation (>0.4) extended to periods as short as 2.2 days and 2.5 days for the xp and yp PM components, respectively. When using the IERS Bulletin B (C04) PM and an interval of almost 6 years, starting in November 1994, the combined OAM+AAM accounted for practically all the annual, semi-annual and Chandler wobble (CW) PM signals. When only AAM was used, either the US National Centers for Environment Prediction reanalysis data, which were used throughout this study, or the Japanese Meteorological Agency data, two large and well-resolved amplitude peaks of about 0.1 mas/day, remained at the retrograde annual and CW periods.  相似文献   
914.
1IntroductionInJune1992,theworldsummitorganizedbytheUnitedNations,withparticipantsincludingnationalleadersfromaroundtheworld,concludedwithAgenda21(UnitedNations,1992),theRioDeclarationonEnvironmentandDevelopment,inRiodeJaneiro.Thedeclarationpromptedcountr…  相似文献   
915.
Soil respiration refers to the process of soil gener-ating and emitting CO2to the atmosphere under the synthetic effect of different environmental factors,which includes mineralization of soil organic matter involved by microorganism and respiration of plant root system and soil animals.The emission of CO2to the atmosphere through soil respiration is the most important link of carbon cycle process of grassland ecosystem,and also the key ecological process of grassland ecosystem exerting effec…  相似文献   
916.
Many volcanic rift zones show dikes that are oriented oblique rather than parallel to the morphological ridge axis. We have evidence that gravitational spreading of volcanoes may adjust the orientation of ascending dikes within the crust and segment them into en-echelon arrays. This is exemplified by the Desertas Islands which are the surface expression of a 60 km long submarine ridge in southeastern Madeira Archipelago. The azimuth of the main dike swarm (average = 145°) deviates significantly from that of the morphological ridge (163°) defining an en-echelon type arrangement. We propose that this deviation results from the gravitational stress field of the overlapping volcanic edifices, reinforced by volcano spreading on weak substratum. We tested our thesis experimentally by mounting analogue sand piles onto a sand and viscous PDMS substratum. Gravitational spreading of this setup produced en-echelon fractures that clearly mimic the dike orientations observed, with a deviation of 10°–32° between the model’s ridge axis and that of the main fracture swarm. Using simple numerical models of segmented dike intrusion we found systematic changes of displacement vectors with depth and also with distance to the rift zone resulting in a complex displacement field. We propose that at depth beneath the Desertas Islands, magmas ascended along the ridge to produce the overall present-day morphology. Above the oceanic basement, gravitational stress and volcano spreading adjusted the principal stress axes’ orientations causing counterclockwise dike rotation of up to 40°. This effect limits the possible extent of lateral dike propagation at shallow levels and may have strong control on rift evolution and flank stability. The results highlight the importance of gravitational stress as a major, if not dominant factor in the evolution of volcanic rift zones.Editorial responsibility: M Carroll  相似文献   
917.
海洋碳循环模式的研究进展   总被引:8,自引:0,他引:8  
徐永福  浦一芬  赵亮 《地球科学进展》2005,20(10):1106-1115
从最简单的三箱模式开始简要回顾了海洋碳循环模式的发展历史,讨论了不同发展时期各种模式的特点,并指出了海洋吸收大气CO2的能力。近年来全球海洋环流碳循环模式经常使用简单生化过程,而在过程模式和一维模式中较详尽探讨生态系统在海洋碳循环的作用。最新的全球环流碳循模式估计海洋在20世纪80年代每年吸收大气CO2为1.5~2.2 GtC。还讨论了模拟海洋碳循环的现状和存在的问题。使用含显式生态系统的碳循环模式是研究CO2生物地球循环及其对全球变化响应的发展趋势。  相似文献   
918.
To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00.Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1.19, 1.46 and 0.67 g CO2m-2 h-1 for June, July, August and September, respectively. Diurnal fluctuation of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m-2. The total CO2 uptake by the ecosystem was up to 583 g CO2 m-2 for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m-2 h-1 in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 efflux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 efflux appeared in April, with a value of 105 g CO2 m-2. The total net CO2 efflux for the whole non-growing season was 356 g CO2 m-2.  相似文献   
919.
The Tibetan Plateau is characterized by lower atmospheric pressure, lower air temperature and high daily and seasonal variation due to high elevation. The photosynthesis of plants is significantly influenced by these alpine environmental factors. Apparent quantum yield (αA) is one of the basic parameters of photosynthesis and mass production. Its accuracy determination is of significance to model photosynthesis of C3 plants and global change on the plateau. In the Lhasa Plateau Ecological Station with 65.4 kPa of atmospheric pressure at an elevation of 3688 m, Li-Cor 6400 portable photosynthesis system was used to measure light response curves of winter wheat in different temperatures and intercellular CO2 concentration (Ci).The slope of light response curve in weak light area of PFD from 0 to 150 μmol m-2 S-1 was used to evaluate the value of αA. The dependence of αA on temperature and intercellular concentration was analyzed. In 30℃, the average value of αAWaS 0.0476 ± 0.0038. It is not quite different from the values in low elevation areas. αA is influenced both by temperature and by the ratio of CO2and O2 partial pressure ([CO2]/[O2]). The measured values in the previous study were much lower.This might be due to systematic errors from instrument and data processing methods. The values of αA decreased linearly with temperature. It decreased 0.0007 in every 1℃ increase of temperature. The decrease slope is similar to those of C3 plants in the previous researches. While [O2] is constant, αA increases with Ciwith a hyperbolic relationship. In comparison with low elevation areas, the αA on the Tibetan Plateau is more sensitive to increase of CO2.  相似文献   
920.
In this paper, by using concentration and carbon stable isotope the CO2 sources of soil profiles developed on limestone, dolostone and claystone basements in Central Guizhou, China are comparatively studied. The results show that CO2 concentration of soil profiles developed on different basements is different, having the following sequence: limestone>dolostone>claystone. Below the soil depth of 20 cm from the surface the ? 13C value of CO2 in soil profile developed on limestone ranges from -12.811‰ - -13.492‰(PDB), that in soil profile developed on dolostone varys from -13.212‰ - -14.271‰(PDB) and that in soil profile developed on claystone is about -20.234‰ - -21.485‰(PDB). Taking the carbon isotope of soil organic matter and carbonate rock as two isotopic endmembers, the proportion of soil CO2 generated by dissolution of carbonate rock is calculated, about 21%-25% for soil profile developed on limestone basement, 19%-21% for soil profile developed on dolostone basement. There is almost no influx of CO2 generated by the dissolution of carbonate rock in soil profile developed on claystone basement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号