首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   175篇
  国内免费   399篇
测绘学   14篇
大气科学   205篇
地球物理   180篇
地质学   665篇
海洋学   122篇
天文学   13篇
综合类   37篇
自然地理   139篇
  2024年   2篇
  2023年   32篇
  2022年   34篇
  2021年   41篇
  2020年   34篇
  2019年   44篇
  2018年   37篇
  2017年   40篇
  2016年   50篇
  2015年   58篇
  2014年   79篇
  2013年   79篇
  2012年   78篇
  2011年   90篇
  2010年   48篇
  2009年   61篇
  2008年   73篇
  2007年   57篇
  2006年   56篇
  2005年   57篇
  2004年   45篇
  2003年   35篇
  2002年   35篇
  2001年   38篇
  2000年   34篇
  1999年   22篇
  1998年   24篇
  1997年   19篇
  1996年   16篇
  1995年   16篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1984年   3篇
  1983年   1篇
  1978年   2篇
  1954年   1篇
排序方式: 共有1375条查询结果,搜索用时 31 毫秒
711.
The Lyngen Magmatic Complex (LMC) of North Norway, consists of a western suite of layered gabbros of normal-mid oceanic ridge basalt (N-MORB) affinity and an eastern suite of layered gabbronorites, quartz-bearing gabbros and diorites/quartz-diorites of IAT (island-arc tholeiitte) to boninitic affinity. The boundary between the suites is defined by a large-scale ductile shear zone, the Rypdalen shear zone (RSZ). In this shear zone anatectic tonalites were generated by partial melting of the gabbro in the presence of an H2O bearing fluid phase.Quartz from the tonalites contains early secondary and secondary liquid-dominated inclusions (88-99 wt.% H2O), with an average salinity of 18 wt.% (calculated as NaCleq). Combined gas and ion chromatography shows that the major ions in the fluid are Cl, Ca2+, Na+ with smaller amounts of K+, Mg2+, Sr2+, Br and NO3. The dominant non-H2O volatile species is N2 (0.5-10%), and small amounts of CO2, CH4 and other hydrocarbons are also present.The cation concentrations in the fluid are variable, due to element exchange during interaction of the fluids with the tonalites, amphibolites and metagabbros of the RSZ. The fluid contributed Na+ and K+ to the melt and gained Ca2+ in exchange, explaining the variable Na+/Ca2+ ratio of the fluid. The Br and Cl contents of the fluid inclusions plot on the same line as evaporating sea water, which strongly suggests a seawater origin for the fluid phase, and a seawater source fits well with other geochemical signatures and the tectonic setting of the LMC.It is suggested that seawater escaped from a subducting slab and was channelled along the Rypdalen shear zone. This caused anatexis of the gabbro, generating tonalitic melts at 0.5-0.9 GPa and 680-800°C.  相似文献   
712.
The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85–80 Ma (San Juan–unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit).

Picrites have LREE-depleted patterns, high Ndi and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their Ndi are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower Nd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan–Multitud Unit by higher Pb ratios and lower Ndi.

The Ecuadorian and Gorgona 88–86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92–86 Ma Mg-rich basalts of the Caribbean–Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68–65 Ma).  相似文献   

713.
Six species of more than 20-year-old desert woody plants in the oasis-desert ecotone were selected for study. The results showed that: (1) in different growing seasons δ13 C values of assimilating organ varied between -14‰ and -16‰ for Haloxylon ammodendron (HA),-14‰ - -15‰ for Calligonum mongolicum (CM) and -25‰ - -28‰ for Caragana korshinskii (CK), Nitraria sphaerocarpa (NS) and Hedysarum scoparium (HS). (2) The net photosynthetic rate (Pn) of HA and CM was significantly higher than those of the other species. With the decrease in Pn for the six species, their intercellular CO2 concentration increased, but stomatal limitation value decreased under the intensive light. At the same time, the photochemical efficiency of PS Ⅱ dropped to different degrees. (3) The CO2 enrichment experiment demonstrated that, Pn of HA and CM increased to different extent under 450 μmol/mol, but their Pn reduced or approximated to the current condition under 650 μmol/mol. Under 450 μmol/mol the efficiency for solar energy utilization of CK and HS significantly reduced and under 650 μmol/mol their respiration rate exceeded photosynthesis rate. It can be concluded that HA and CM have some function of pathway for C4, but the other three species have the function for C3. The decline in their Pn is mainly caused by non-stomatal factors. HA, CM, CK and HS exhibited photoinhibition, which disappeared in a short time. This is a kind of positive readjustment to adapting to the desert environment. HA and CM can adapt to the high CO2 environment, but CKand HS cannot. With the rise in atmospheric CO2 concentration and climate warming, the latter two species in the oasis-desert ecotone may be gradually degraded or even disappear.  相似文献   
714.
M.C. Neves  M.H.P. Bott  R.C. Searle   《Tectonophysics》2004,386(3-4):223-242
The effect of the seafloor subsidence on the horizontal stress field is investigated by combining the finite element method with a formulation that allows us to compute the two-dimensional (2D) horizontal stresses arising from isostatically compensated vertical loads. The topographic load created by the elevation of midocean ridges relative to old ocean floor is shown to be a significant source of ridge-parallel tensile stresses. These may predominate over the ridge-perpendicular stresses and explain observations at midocean ridge offsets such as (1) oblique normal faulting at ridge-transform intersections trending up to 60° relative to the ridge axis, and (2) nontransform offsets consisting of structures oriented at 45° relative to the ridge trend. At midocean ridge overlaps, rotation of the ridge-parallel tensile stresses favours rift propagation at more than 45° relative to the ridge trend. It is suggested that propagating rift tips that bend abruptly lead to partially unlocked offsets, and as a result large overlaps may eventually start to rotate and evolve into a microplate.  相似文献   
715.
The Altai-Salair area in southern Siberia is a Caledonian folded area containing fragments of Vendian–Early Cambrian island arcs. In the Vendian–Early Cambrian, an extended system of island arcs existed near the Paleo-Asian Ocean/Siberian continent boundary and was located in an open ocean realm. In the present-day structural pattern of southern Siberia, the fragments of Vendian–Early Cambrian ophiolites, island arcs and paleo-oceanic islands occur in the accretion–collision zones. We recognized that the accretion–collision zones were mainly composed of the rock units, which were formed within an island-arc system or were incorporated in it during the subduction of the Paleo-Asian Ocean under the island arc or the Siberian continent. This system consists of accretionary wedge, fore-arc basin, primitive island arc and normal island arc. The accretionary wedges contain the oceanic island fragments which consist of OIB basalts and siliceous—carbonate cover including top and slope facies sediments. Oceanic islands submerged into the subduction zone and, later were incorporated into an accretionary wedge. Collision of oceanic islands and island arcs in subduction zones resulted in reverse currents in the accretionary wedge and exhumation of high-pressure rocks. Our studies of the Gorny Altai and Salair accretionary wedges showed that the remnants of oceanic crust are mainly oceanic islands and ophiolites. Therefore, it is important to recognize paleo-islands in folded areas. The study of paleo- islands is important for understanding the evolution of accretionary wedges and exhumation of subducted high-pressure rocks.  相似文献   
716.
The building-up of the Andean Range is linked to the subduction of the Pacific lithosphere beneath the South American plate. However, the formation of the Central Andes is marked by continental crustal shortening, whereas accretion and underplating of exotic oceanic terranes occurred in the northern Andes. The study of various magmatic and metamorphic rocks exhumed in the Western Cordillera of Ecuador by Miocene transpressive faults enables us to constrain the nature and thermal evolution of the crustal root of this part of Ecuador. These rocks are geochemically similar to oceanic plateau basalts. The thermobarometric peak conditions of a granulite and an amphibolite indicate temperatures of 800–850?°C and pressures less than 6–9 kbar (lack of garnet). The abnormally high geothermal gradient (≈40?°C?km?1) is probably due to the activity of the magmatic arc, which developed on the accreted oceanic terranes after Late Eocene times, and may have provoked the re-mobilisation of deeply underplated oceanic material during the genesis of the Neogene to Recent arc. To cite this article: É. Beaudon et al., C. R. Geoscience 337 (2005).  相似文献   
717.
Abstract. Many granitic plutons of Early Cretaceous age are intruded on various scales in the Kitakami Mountains. The stock‐type Ganidake pluton accompanies enormous Fe‐Cu mineralization of the Kamaishi deposits, whereas the Kurihashi pluton accompanies less mineralization. To elucidate the cause of these differences, the metamorphic conditions and redox state of the contact metamorphic aureole around the Kurihashi pluton have been examined by the petrochemical study and gas analysis of the metamorphic rocks. A typical mineral assemblage in the pelitic rocks in the lowest‐grade part is biotite‐muscovite‐chlorite‐quartz‐plagio‐clase‐graphite, which occur more than 2 km away from the contact point with the Kurihashi pluton. Graphite disappears at the 1550 m point, and cordierite and garnet appear in the middle and highest‐grade parts, respectively. A typical mineral assemblage in the tuffaceous rocks in the lower‐grade part is chlorite‐actinolite‐biotite‐quartz‐plagioclase. Actinolite changes into hornblende near to the pluton. The CO2/CH4 ratios obtained in measurements by gas chromatography exceeds 100 in the pelitic rocks at the contact point with the pluton. The ratios decrease and become less than 0.1 with distance from the pluton. Equilibrium temperatures calculated from a garnet‐biotite pair in the pelitic rock and a hornblende‐plagioclase pair in the tuffaceous rock are 640d? and 681 d?C at the contact point, respectively. The log?o2 values among these metamorphic aureoles estimated from the CO2/CH4 ratios are slightly lower than the FMQ‐buffer. Redox states of the contact metamorphic aureole are kept in an intermediate condition between oxidized magma of the Kurihashi pluton and graphite‐bearing pelitic country rocks. Judging from these metamorphic conditions around the Kurihashi pluton and from the re‐evaluation of the previous knowledge about contact metasomatism around the Ganidake pluton, the Kurihashi metamorphism has occurred at higher temperatures and dry conditions than the Ganidake metasomatism. These differences in the metamorphic conditions and presence or absence of a large limestone mass around the pluton might be the principal reasons why the Kurihashi pluton accompanies less mineralization and the Ganidake pluton accompanies gigantic Kamaishi skarn mineralization.  相似文献   
718.
Transform and non-transform discontinuities that offset slow spreading mid-ocean ridges involve complex thermal and mechanical interactions. The truncation of the ridge axis influences the dynamics of spreading and accretion over a certain distance from the segment-end. Likewise, the spreading system is expected to influence the lithospheric plate adjacent to the ridge-end opposite of the discontinuity. Tectonic effects of the truncated ridge are noticeable in for example the contrast between seafloor topography at inside corners and outside corners, along-axis variations in rift valley depth, style of crustal accretion, and ridge segment retreat and lengthening. Along such slow-spreading discontinuities and their fossil traces, oceanic core complexes or mega-mullion structures are rather common extensional tectonic features. In an attempt to understand deformation of oceanic lithosphere near ridge offsets, the evolution of discontinuities, and conditions that may favor oceanic core complex formation, a three-dimensional thermo-mechanical model has been developed. The numerical approach allows for a more complete assessment of lithosphere deformation and associated stress fields in inside corners than was possible in previous 3-D models. The initial suite of results reported here focuses on deformation when axial properties do not vary along-strike or with time, showing the extent to which plate boundary geometry alone can influence deformation. We find that non-transform discontinuities are represented by a wide, oblique deformation zone that tends to change orientation with time to become more parallel to the ridge segments. This contrasts with predicted deformation near transform discontinuities, where initial orientation is maintained in time. The boundary between the plates is found to be vertical in the center of the offset and curved at depth in the inside corners near the ridge–transform intersection. Ridge–normal tensile stresses concentrate in line with the ridge tip, extending onto the older plate across the discontinuity, and high stress amplitudes are absent in the inside corners during the magmatic accretionary phase simulated by our models. With the tested rheology and boundary conditions, inside corner formation of oceanic core complexes is predicted to be unlikely during magmatic spreading phases. Additional modeling studies are needed for a full understanding of extensional stress release in relatively young oceanic lithosphere.  相似文献   
719.
CO2 fluxes from soils and related environmental factors were measured in three forest ecosystems of Dinghu Mountain using static chamber-gas chromatograph technique for one year. The seasonal pattern of CO2 flux, contribution of litter on total CO2 flux and the correlations of CO2 flux with soil temperature and soil water content were examined for each type of forest. The results were given as followings: (1) The seasonal patterns of CO2 flux from soil of the three types of forest were similar, with a higher CO2 flux in rainy season than in dry season. The comparative relations of mean annual CO2 fluxes between the three sites were expressed as:monsoon forest > mixed forest > pine forest. (2) CO2 fluxes from litter decomposition in monsoon forest, mixed forest and pine forest accounted for 24.43%, 41.75% and 29.23% of the corresponding total CO2 fluxes from forest floor, respectively. (3) Significant relationships were found between CO2 fluxes and soil temperatures at 5 cm depth for the three types of forest, which could be best described by exponential equations. The calculated Q10 values based on soil temperature at 5 cm depth ranged from 1.86 to 3.24. More significant relationships were found between CO2 fluxes and soil water content when the annual variation coefficients of soil moisture were higher.  相似文献   
720.
张虎  范柱国  曾文涛 《云南地质》2005,24(4):421-426
澜沧江断裂以东的景洪变质岩带中的绿片岩分布较为广泛,其原岩为基性火山岩。主量元素表现为低碱、低钛、低FeO*/MgO、富纳、稀土配分曲线呈平坦型。微量元素比值蛛网图上,不相容元素亦具平坦型特点。显示作为绿片岩原岩的基性火山岩属大洋拉斑玄武岩。经构造环境判别,进一步证实为N型洋中脊玄武岩,其形成与原特提斯澜沧江洋密切相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号