首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1161篇
  免费   175篇
  国内免费   409篇
测绘学   13篇
大气科学   9篇
地球物理   356篇
地质学   1063篇
海洋学   104篇
天文学   2篇
综合类   21篇
自然地理   177篇
  2024年   14篇
  2023年   29篇
  2022年   61篇
  2021年   72篇
  2020年   60篇
  2019年   62篇
  2018年   71篇
  2017年   75篇
  2016年   54篇
  2015年   61篇
  2014年   48篇
  2013年   63篇
  2012年   76篇
  2011年   52篇
  2010年   48篇
  2009年   72篇
  2008年   56篇
  2007年   83篇
  2006年   75篇
  2005年   58篇
  2004年   74篇
  2003年   60篇
  2002年   48篇
  2001年   40篇
  2000年   43篇
  1999年   35篇
  1998年   31篇
  1997年   36篇
  1996年   37篇
  1995年   24篇
  1994年   25篇
  1993年   29篇
  1992年   20篇
  1991年   10篇
  1990年   10篇
  1989年   11篇
  1988年   15篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
排序方式: 共有1745条查询结果,搜索用时 15 毫秒
121.
The Lufilian arc of Central Africa (also called Katangan belt or Copperbelt) is a zone of low to highgrade metasedimentary (and subsidiary igneous) rocks of Neoproterozoic age hosting highgrade CuCoU and PbZn mineralizations. The Lufilian arc is located between the Congo and Kalahari cratons and defines a structure which is convex to the north. Three major phases of deformation characterize the construction of the Lufilian arc. The first phase (D1) called the “Kolwezian phase” developed folds and thrust sheets with a northward transport direction. D1 deformation occurred in the Lufilian arc between ca. 800 and 710 Ma, with a peak in the range 790–750 Ma. It is here correlated with the main deformation in the Zambezi belt. Southward-verging folds with the same trends as the D1 structures were previously linked to a second tectonic event named Kundelunguian phase of the Lufilian orogeny. We show in this paper that they are backfolds developed during D1 along Katangan ramps and especially along the Kibaran foreland. The second phase (D2) of the Lufilian orogeny is the “Monwezi phase” including several large leftlateral strikeslip faults which have been activated successively. During this deformation phase, the eastern block of the belt rotated clockwise, giving the present day NWSE trend of D1 structures in this part of the Lufilian arc, and generating its convex geometry. The Mwembeshi dislocation, the major transcurrent shear zone separating the Zambezi and Lufilian arc, was mostly active during the D2 deformation phase. D2 deformation occurred between ca. 690 and 540 Ma. Such a long time interval is attributed to the migration of strikeslip faults developed sequentially from south to north, and probably to a slow convergence velocity during the collision between the Congo and Kalahari cratons. The third phase (D3) of the Lufilian orogeny is a late event called the “Chilatembo phase”, marked by structures transverse to the trends of the Lufilian arc. This deformation and the post-D2′ uppermost Kundelungu sequence (Ks3 Plateaux Group), are younger than 540 Ma and probably early Paleozoic.  相似文献   
122.
板块俯冲起始与成熟阶段的差异变质响应   总被引:1,自引:0,他引:1  
板块俯冲起始是俯冲带最不为人知的关键过程之一,对理解全球板块构造如何启动有重要意义。本文综合了最新的数值模拟、变质岩石学和年代学研究结果,探讨板块俯冲起始到成熟阶段的热结构和变质作用差异。从俯冲起始到成熟阶段,俯冲带热结构由"热"变"冷",初始俯冲更可能形成的是角闪岩或麻粒岩,形成于热俯冲环境,以逆时针p-t轨迹为主,通常伴随板块部分熔融过程;而成熟阶段形成的主要是低温蓝片岩和榴辉岩,形成于冷俯冲环境,具有典型的顺时针p-t轨迹,以板块变质脱水为主。对俯冲带高t/p变质岩(如变质底板)的进变质过程、时间以及构造背景等方面需进一步加强研究,以获取更详实的现代板块俯冲起始阶段的地质过程。  相似文献   
123.
Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ?Nd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex geological history of the region coupling the Uralian Orogen with the East European Platform in the present-day structure.  相似文献   
124.
腾冲火山岩区是我国全新世以来记载火山喷发的少数地区之一,该地区岩浆作用的性质与成因是揭示青藏高原东缘的现今侧向生长过程与深部作用的重要依据。本文对腾冲火山岩区的马鞍山、黑空山、打鹰山全新世火山岩开展了矿物化学和岩石地球化学研究,以期揭示岩石成因和深部动力学过程。腾冲全新世火山岩主体岩性为高钾钙碱性系列的玄武粗安岩和粗安岩。岩石的Ca O、Fe_2O_3~T、Ti O_2与Si O_2负相关,而K_2O与Si O_2正相关,表明岩浆演化过程中可能存在橄榄石、辉石和斜长石的分离结晶作用。岩石中存在酸性斜长石(更长石,An=28)大颗粒捕掳晶,其边部发育了基性斜长石(拉长石,An=65)增生边;在大颗粒石英捕掳晶的边部发育了辉石的反应边,这些结构表明在岩浆上升到地壳浅部时,曾受到了花岗岩围岩的混染,但岩石的Th/Nb值均小于1.16,表明地壳混染总体不显著。腾冲全新世火山岩大离子亲石元素富集、高场强元素相对亏损,高Th/U、低Ba/La,富集Sr-Nd同位素,其岩浆源区应为经历过洋壳沉积物交代后的富集地幔。腾冲火山岩属于大陆板内环境,是印度与亚洲大陆碰撞后岩浆作用的产物。火山岩是沿着腾冲盆地南北向展布,且熔岩分布面积有限。由于高原侧向生长过程中的区域性走滑断裂会引起局部的伸展,腾冲火山岩产出可能与富集岩石圈地幔的减压熔融有关。  相似文献   
125.
为了研究班公湖-怒江缝合带的壳幔电性结构及构造特征,并为其俯冲极性提供电性约束,对青藏高原中部申扎-双湖大地电磁测深剖面进行全面数据处理分析,获得了可靠的二维电性结构模型,研究表明:沿剖面上地壳分布的是规模不等的高阻体,底面埋深在10~25 km变化,高阻层之下发现由不连续的高导体构成的中下地壳高导层.通过对电性结构的分析,认为班公湖-怒江特提斯洋的俯冲消亡极性可能是双向的,随后拉萨-羌塘地体碰撞带处的上地壳高阻体发生拆沉,以上两次动力学事件可能共同作用于缝合带处的壳幔高导体,同时北拉萨地体的壳幔高导体还可能体现了构造作用、岩浆活动和成矿作用之间的关系.  相似文献   
126.
青藏高原的隆升:青藏高原的岩石圈结构和构造地貌   总被引:20,自引:1,他引:20       下载免费PDF全文
笔者回顾青藏高原隆升研究的历史,剖析各种隆升动力学模式,依据着青藏高原岩石圈组成的构的强烈不均一性和、三分性”,“对称性”构造地貌格局,提出了青藏高原隆升是印度地块和塔里木一可拉善地块双向不均一俯冲和青藏腹地深层热隆扩展联合作用的结果,俯冲是高原隆升的重要机制,而热隆扩展是高原隆升的直接原因。  相似文献   
127.
在大桦背花岗岩体区域地质和岩石学研究的基础上,运用X射线荧光光谱分析样品主量元素,采用电感耦合等离子体质谱对其样品进行了微量、稀土元素分析.同时结合前人的锆石年龄和Pb同位素数据,认为大桦背花岗岩为I型花岗岩,主要为古亚洲洋板块向华北板块多期俯冲过程中,中下地壳、成熟岛弧和大洋岛弧大面积部分熔融的产物,伴有少量地幔与未知含量的海洋沉积物及早期造山作用产物等物质的不同程度混合作用.  相似文献   
128.
苏文辉  许大鹏 《地质论评》2012,58(2):224-236
本文分析评论了嵇少丞等(2010)发表的"石英—柯石英相变研究中若干问题讨论"一文。指出他们对柯石英非俯冲折返新机制的一些误解,对某些热力学、物理学概念,及其在地学问题中的解释理解的不同。分析了机械球磨的作用机制;论证了机械球磨作用本质与构造挤压剪切作用本质的同一性。分析了岩石糜棱岩化过程的两个阶段;讨论了地震波形成柯石英机制的可能性。围绕比较标准问题,论证了高能机械球磨(预处理)能大大降低α-石英转变成柯石英的压力、温度和合成时间,促进柯石英的形成。用小尺度不均匀局域高压微区模型解释了人工合成柯石英的规律性、南极洲天然矿物的行为,柯石英的寄生矿物、岩石——锆石、榴辉岩包裹体、非包裹体的形成。列举事例澄清了"球磨引进的Fe杂质提高柯石英形成压力迟缓合成"的说法;讨论了第二相存在对石英—柯石英转变的影响和"应变禁区"边界区的应力梯度相变驱动力可以形成柯石英问题。指出了机械球磨石英原料预处理和静高压合成柯石英后处理两步法,是一种实验室研究柯石英形成规律的有效物理方法;小尺度不均匀局域高压微区模型和无需板块深俯冲快折返的柯石英形成机制,是一种有希望的柯石英形成新机制。  相似文献   
129.
黎心远  赵元艺 《地质学报》2018,92(2):244-262
黑龙江三矿沟-庄乎河地区位于多宝山成矿带北侧,区内构造-岩浆-热液活动复杂,主要发育有三矿沟矽卡岩型矿床及庄乎河热液脉型矿床。本文选择三矿沟-庄乎河地区的岩浆岩主体为对象开展年代学、岩石学及元素地球化学等综合研究,系统厘定两个时期的岩浆岩,包括海西期庄乎河流纹岩(288~294 Ma)、庄乎河花岗斑岩(297~303Ma),燕山期三矿沟花岗闪长岩(172~179Ma)和庄乎河矿区石英闪长岩(165~176Ma)。三矿沟-庄乎河地区的成(含)矿岩浆岩均具有高硅、高铝及富碱的I型花岗岩特征,富集Rb、Sr、Ba、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,轻重稀土元素分馏明显,δEu亏损等特征。本次研究认为研究区与成矿作用有关的构造背景为活动大陆边缘,三矿沟-庄乎河地区在海西期受到古亚洲洋俯冲作用形成庄乎河花岗斑岩及流纹岩,而燕山期三矿沟花岗闪长岩和庄乎河石英闪长岩则与成矿富集作用有关,且两区矿床成矿作用与燕山期古太平洋俯冲作用密切相关。  相似文献   
130.
藏南努日矿床位于冈底斯成矿带南缘,前人获得的辉钼矿Re-Os同位素年龄为23 Ma,与明则和程巴矿床成矿时代一致,但矿区内至今未发现与矿化有关的成矿斑岩体。本文报道了努日矿区新发现的与矿化关系密切的石英闪长岩的地球化学特征,获得石英闪长岩的LA-ICP-MS锆石U-Pb年龄为93.42±0.76 Ma,与同一成矿带内桑布加拉和克鲁铜金矿成矿时代一致(90~93 Ma),表明矿区可能存在两期成矿事件。石英闪长玢岩的主量微量元素SiO_2含量为57.19%~58.23%,A1_2O_3含量为15.78%~16.03%,MgO含量为4.74%~5.32%,Mg~#指数为65.2~67.3;富集大离子亲石元素(Rb、Sr、Ba、U等)及轻稀土元素,亏损高场强元素,显示出埃达克岩特征。研究表明石英闪长玢岩形成于洋壳俯冲阶段的弧岩浆岩,洋壳熔融形成的母岩浆侵入近地表形成早期铜多金属矽卡岩矿化。晚白垩世成矿事件的发现进一步佐证了研究区存在两期矿化叠加事件,拓展了研究区找矿方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号