首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   43篇
  国内免费   79篇
测绘学   3篇
大气科学   1篇
地球物理   218篇
地质学   363篇
海洋学   68篇
天文学   2篇
综合类   5篇
自然地理   27篇
  2024年   5篇
  2023年   5篇
  2022年   5篇
  2021年   9篇
  2020年   14篇
  2019年   6篇
  2018年   12篇
  2017年   18篇
  2016年   20篇
  2015年   9篇
  2014年   21篇
  2013年   35篇
  2012年   30篇
  2011年   12篇
  2010年   13篇
  2009年   57篇
  2008年   53篇
  2007年   30篇
  2006年   40篇
  2005年   29篇
  2004年   40篇
  2003年   21篇
  2002年   24篇
  2001年   17篇
  2000年   24篇
  1999年   18篇
  1998年   27篇
  1997年   17篇
  1996年   18篇
  1995年   10篇
  1994年   13篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
501.
针对高泥质水合物储层,其分解过程中会产生大量的游离砂,在气-液渗流作用下发生运移,容易导致砾石充填防砂介质渗透性降低,即渗透损伤,使得产能下降并影响防砂砾石层的长期有效性。为了探究防砂砾石在不同影响因素下的渗透损伤情况,本文采用混合正交试验,通过自行研制的阻砂试验系统进行不同储层含水量、试验压力和砾石规格的阻砂试验并测量试验前后防砂介质的渗透系数,观察阻砂试验现象和分析渗流规律和渗透损伤规律。结果表明,由于粉细砂的运移,防砂砾石层经历由通到堵再到通的过程,因此阻砂试验渗流分为4个阶段:初期渗流阶段(无堵塞)→稳定渗流阶段(逐渐堵塞)→气、液渗流阶段(突然疏通)→气体渗流阶段(通);储层含水量、试验压力和砾石粒径较大时,储层中的粉细砂运移更容易,出砂情况更为严重,砾石防砂层的渗透损伤较严重,但储层含水量大于125%时,渗透损伤比反而下降;影响渗透损伤程度大小排序为:砾石规格>试验压力>储层含水量,砾石规格对防砂介质渗透损伤的影响为主控因素,最佳砾石中值比D50/d50为23.6,有利于防砂和产气,研究结果为砾石充填的防砂介质渗透损伤研究提供参考。  相似文献   
502.
Hetu C. Sheth   《Gondwana Research》2005,8(2):109-127
Deep mantle plumes supposedly incorporate deeply subducted eclogitized oceanic crust, and continental flood basalts (CFBs) are now thought by some to be derived from such eclogite-bearing peridotite plumes. Eclogite-peridotite mixtures have much lower solidi (and produce much greater melt fractions for a given temperature) than peridotite. Fe-rich (eclogite- or pyroxenite-bearing) sources have been inferred for many CFBs. However, plumes with considerable amounts of eclogite should have difficulty in upwelling owing to the high density of eclogite. Besides, CFBs are always located along pre-existing lithospheric structures (suture zones, edges of thick cratons) and commonly associated with lithospheric rifting and continental breakup. India's major late Mesozoic CFB, the Deccan Traps, erupted through rift zones and a new continental margin that had developed along ancient suture zones traversing the subcontinent. Many Deccan basalts are too Fe-rich to have been in equilibrium with a peridotite mantle source, and have commonly been considered to be significantly fractionated derivatives of picritic liquids. However, it is possible to view them as relatively less evolved liquids derived from a source with extra fertility (i.e., an Fe-rich source). A new non-plume, plate tectonic model for Icelandic hotspot volcanism involves melting of a shallowly recycled slab of eclogitized Iapetus oceanic crust formerly trapped along the Caledonian suture. The model explains the geochemical-petrological characteristics of Icelandic basalts, and is consistent with passive upper mantle upwelling under Iceland inferred from recent seismic tomography. Based on the petrological and geochemical features of the Deccan flood basalts of the type section, in the Western Ghats, I propose that old, eclogitized oceanic crust trapped in the ancient Indian suture zones could have produced voluminous basaltic melts during the Deccan event.  相似文献   
503.
Four major ash zones recorded in piston cores raised from the Iceland Plateau north of Iceland are shown to be coincident with the last four interglacial isotopic stages. Their geochemical composition links the ashes to volcanic events on Iceland. The occurrence of these ash layers, which record events orders of magnitude larger than the ‘normal’ Holocene volcanic eruptions, can not be explained by changes in sea ice cover and atmospheric circulation alone. It is suggested that these events are related to pressure releases in the magma chambers resulting from major deglaciations of the Icelandic Ice Cap.  相似文献   
504.
New K-Ar dating and major- and trace-element analyses from the U ak-Selendi-Emet (USE) area constrain the timing of changes in the nature of volcanism in the Miocene in western Turkey. The data reveal a change from dominantly calc-alkaline and silicic in the Early Miocene to largely alkaline and more mafic volcanism in the Middle Miocene. This probably reflects a decreasing amount of crustal contamination with time, a result of extensional tectonics. High levels of various incompatible elements (including K) in the more mafic members, suggest an enriched subcontinental lithospheric source region for the Middle Miocene USE lavas. Highly variable Nb/Y, Ti/Y and Th/Nb ratios suggest a lithospheric mantle heterogeneously enriched by two processes: (1) enrichment by subduction-related processes producing high Th/Nb but low Nb/Y and Ti/Y; and (2) enrichment by small degree melts of depleted upper mantle producing low Th/Nb but high Nb/Y and Ti/Y. Both of these enrichment processes have variably contributed to Middle Miocene K-rich lavas in the USE area. The mechanism which initiated the melting of the enriched lithosphere is considered to be extension which produced decompression melting. Comparisons with the nearby Kula lavas reveals that by the Pliocene to Quaternary, volcanism, although still enriched in incompatible elements, had become sodic. It seems likely that continued extension up to this time thinned the lithosphere to such an extent that asthenospheric melts were produced which ascended and mixed with previously enriched lithosphere.  相似文献   
505.
The Scafell caldera-lake volcaniclastic succession is exceptionally well exposed. At the eastern margin of the caldera, a large andesitic explosive eruption (>5 km3) generated a high-mass-flux pyroclastic density current that flowed into the caldera lake for several hours and deposited the extensive Pavey Ark ignimbrite. The ignimbrite comprises a thick (≤125 m), proximal, spatter- and scoria-rich breccia that grades laterally and upwards into massive lapilli-tuff, which, in turn, is gradationally overlain by massive and normal-graded tuff showing evidence of soft-state disruption. The subaqueous pyroclastic current carried juvenile clasts ranging from fine ash to metre-scale blocks and from dense andesite through variably vesicular scoria to pumice (<103 kg m−3). Extreme ignimbrite lithofacies diversity resulted via particle segregation and selective deposition from the current. The lacustrine proximal ignimbrite breccia mainly comprises clast- to matrix-supported blocks and lapilli of vesicular andesite, but includes several layers rich in spatter (≤1.7 m diameter) that was emplaced in a ductile, hot state. In proximal locations, rapid deposition of the large and dense clasts caused displacement of interstitial fluid with elutriation of low-density lapilli and ash upwards, so that these particles were retained in the current and thus overpassed to medial and distal reaches. Medially, the lithofacies architecture records partial blocking, channelling and reflection of the depletive current by substantial basin-floor topography that included a lava dome and developing fault scarps. Diffuse layers reflect surging of the sustained current, and the overall normal grading reflects gradually waning flow with, finally, a transition to suspension sedimentation from an ash-choked water column. Fine to extremely fine tuff overlying the ignimbrite forms ∼25% of the whole and is the water-settled equivalent of co-ignimbrite ash; its great thickness (≤55 m) formed because the suspended ash was trapped within an enclosed basin and could not drift away. The ignimbrite architecture records widespread caldera subsidence during the eruption, involving volcanotectonic faulting of the lake floor. The eruption was partly driven by explosive disruption of a groundwater-hydrothermal system adjacent to the magma reservoir.  相似文献   
506.
Active fault zones of Armenia, SE Turkey and NW Iran present a diverse set of interrelated natural hazards. Three regional case studies in this cross-border zone are examined to show how earthquakes interact with other hazards to increase the risk of natural disaster. In northern Armenia, a combination of several natural and man-made phenomena (earthquakes, landslides and unstable dams with toxic wastes) along the Pambak-Sevan-Sunik fault (PSSF) zone lowers from 0.4 to 0.2–0.3g the maximum permissible level (MPL) of seismic hazard that may induce disastrous destruction and loss of life in the adjacent Vanadzor depression.

In the Ararat depression, a large active fault-bounded pull-apart basin at the junction of borders of Armenia, Turkey, Iran and Azerbaijan, an earthquake in 1840 was accompanied by an eruption of Ararat Volcano, lahars, landslides, floods, soil subsidence and liquefaction. The case study demonstrates that natural hazards that are secondary with respect to earthquakes may considerably increase the damage and the casualties and increase the risk associated with the seismic impact.

The North Tabriz–Gailatu fault system poses a high seismic hazard to the border areas of NW Iran, eastern Turkey, Nakhichevan (Azerbaijan) and southern Armenia. Right-lateral strike–slip motions along the North Tabriz fault have given rise to strong earthquakes, which threaten the city of Tabriz with its population of 1.2 million.

The examples illustrate how the concentration of natural hazards in active fault zones increases the risk associated with strong earthquakes in Armenia, eastern Turkey and NW Iran. This generally occurs across the junctions of international borders. Hence, the transboundary character of active faults requires transboundary cooperation in the study and mitigation of the natural risk.  相似文献   

507.
Classification,formation, and transport mechanisms of mud clasts   总被引:2,自引:0,他引:2  
Mud clasts are common in non-marine to marine sedimentary records, however, why lack a widely accepted classification scheme? We propose that it is the relative balance of volumetric abundance, sorting, roundness, and grain size that controls the texture and fabric of mud clasts. Nine distinct types of mud clasts are identified in the study based on quantitatified properties, and fall into two groups coarse-grained and fine-grained. The generation of mud clasts can be assigned to failure, erosion, and/or bioturbation of muddy sediment. These clasts are transported within fluid flows including Newtonian fluids, non-Newtonian fluids, and Bingham plastics (gravity flow and turbidity flow), showing various physical characteristics depended upon the density and viscosity of flows. Newtonian flows with less density and viscosity commonly form mud clasts with mature textures. In non-Newtonian (gravity-driven) flows, mud clasts are normally transported in laminar flows with high density and viscosity, developing matrix-supported mud clasts with immature textures. The study of classification, formation, and transport mechanisms of mud clasts has implications for identifying and interpreting sedimentary environments.  相似文献   
508.
New insight into the crust and upper mantle structure under Alaska   总被引:1,自引:0,他引:1  
To better understand the seismic structure of the subducting Pacific plate under Alaska, we determined the three-dimensional P-wave velocity structure to a depth of approximately 200 km beneath Alaska using 438,146 P-wave arrival times from 10,900 earthquakes. In this study an irregular grid parameterization was adopted to express the velocity structure under Alaska. The number of grid nodes increases from north to south in the study area so that the spacing between grid nodes is approximately the same in the longitude direction. Our results suggest that the subducting Pacific slab under Alaska can be divided into three different parts based on its geometry and velocity structure. The western part has features similar to those in other subduction zones. In the central part a thick low-velocity zone is imaged at the top of the subducting Pacific slab beneath north of the Kenai Peninsula, which is believed to be most likely the oceanic crust plus an overlying serpentinized zone and the coupled Yakutat terrane subducted with the Pacific slab. In the eastern part, significant high-velocity anomalies are visible to 60–90 km depth, suggesting that the Pacific slab has only subducted down to that depth.  相似文献   
509.
Ground penetrating radar (GPR) survey was conducted in the Wushanting mud volcano field (Yanchao, Kaohsiung) using a 500 MHz antennae, which allowed high-resolution imaging of subsurface structures. Seven GPR reflection characteristics are recognized. Sigmoid GPR reflection patterns resulted from a recent mud lobe deposited above an underlying older mud lobe front. Contorted GPR facies resulted from recent mud flow which encountered obstacles. Subparallel reflections resulted from mud volcano deposits of limited flowability, low velocity and gentle gradient. Hummocky reflection patterns are formed by interfingering of recent mud lobes building onto low land. Disrupted GPR facies were due to lateral breaks of continuity from mud cracks, which, according to field observation, can provide channels for erosion and form deeper erosion gullies. GPR time slices of different depths are rendered as a three-dimensional model. Approximately orbicular GPR reflection characteristics can indicate arcuate stacked mud lobe fronts of different periods. Some depositional models to explain GPR reflection characteristics can be founded upon observations of recent sedimentary phenomena. The models of this study may be applied to paleoenvironments and the depositional evolution of mud volcanoes in similar geological settings.  相似文献   
510.
近几年受地震属性分析技术的启发,出现了利用测井属性分析泥页岩裂缝油气藏的新方法.为了避免常规测井信号受到噪声干扰影响裂缝识别效果,利用小波变换的高频属性对裂缝识别展开研究.以贵州岑巩地区下寒武统牛蹄塘组的泥页岩裂缝性油气藏为例,观察和分析野外黑色页岩露头、岩心薄片及镜下照片,总结了该地区裂缝发育特征和成因;然后着重利用研究区的测井资料,运用小波阈值去噪和小波高频属性方法对裂缝进行了识别.研究结果表明:研究区主要发育高角度剪性缝、张剪性缝、低角度滑脱缝及层间缝,采用的小波阈值去噪方法具有高信噪比和低均方差特点,在保留原始信号特点的基础上得到更加真实的信号;通过小波高频属性方法提取了声波时差信号中的高频信号,识别出了常规测井方法无法识别的泥页岩裂缝,该套方法成功在贵州岑巩页岩气裂缝识别中得到成功应用,并具有一定的借鉴意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号