首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   116篇
  国内免费   162篇
测绘学   22篇
大气科学   2篇
地球物理   141篇
地质学   231篇
海洋学   872篇
天文学   1篇
综合类   83篇
自然地理   146篇
  2024年   3篇
  2023年   11篇
  2022年   27篇
  2021年   20篇
  2020年   49篇
  2019年   44篇
  2018年   27篇
  2017年   34篇
  2016年   36篇
  2015年   32篇
  2014年   55篇
  2013年   62篇
  2012年   50篇
  2011年   74篇
  2010年   79篇
  2009年   101篇
  2008年   107篇
  2007年   94篇
  2006年   94篇
  2005年   73篇
  2004年   70篇
  2003年   57篇
  2002年   52篇
  2001年   22篇
  2000年   37篇
  1999年   27篇
  1998年   18篇
  1997年   16篇
  1996年   19篇
  1995年   13篇
  1994年   19篇
  1993年   20篇
  1992年   16篇
  1991年   10篇
  1990年   4篇
  1989年   5篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
排序方式: 共有1498条查询结果,搜索用时 15 毫秒
71.
含水砂层对堆积体稳定性的影响研究   总被引:8,自引:3,他引:5  
受复杂地质环境的影响,我国西南岷江上游沿岸普遍发育一种前缘多分布有一层或多层具一定厚度含水砂层的特殊堆积体。大量工程实践表明,工程开挖的扰动可导致砂层出现明显侧向变形,进而导致整个堆积体的失稳破坏。本文采用数值计算的方法,结合某典型堆积体对开挖条件下砂层影响其整体稳定性的作用机理进行了较为深入的分析和探讨。  相似文献   
72.
根据2002—2003年珠江口12个航次的调查资料,分析探讨了不同调查时间和区域浮游幼虫的组成类型、丰度变化和环境因子的影响。以表层盐度(S)变化将调查海域划分成三个区域:I区(S<25)、II区(2530)。12个航次的调查结果显示:调查海域共出现浮游幼虫12个类型,隶属5个动物门,II区和III区的类型数一般高于I区,软体动物门和棘皮动物门的幼虫只出现在II区和III区。其中2002年7月(夏季)、2003年1月(冬季)和4月(春季)的3个大航次结果表明珠江口浮游幼虫的平均丰度为61ind/m3,三个区域的平均丰度比较为II区(124ind/m3)>I区(33ind/m3)>III区(27ind/m3),春夏季的丰度高于冬季。另外在I区进行了9个小航次调查的研究表明:I区浮游幼虫平均丰度较高,月份之间的丰度差别明显,不同站位之间也有差别。温度和食料是影响珠江口浮游幼虫丰度变化的主要因素。  相似文献   
73.
冬季和春季长江口及其近海水域浮游病毒丰度的分析   总被引:9,自引:2,他引:7  
采用荧光显微技术,对2006年长江口及近海水域20个站点的表层及10m层或潜水体冬、春两季的浮游病毒丰度进行了检测,对浮游病毒丰度在季节(冬、春两季)、水平分布和垂直分布上的变化进行了探讨.调查区浮游病毒丰度在冬、春季节上并无明显差异,但在水平分布上存在很大差异,河口区浮游病毒直接检测量(Virus Direct Count, VDC)达到10^7个/ml,近海水域VDC为10^6个/ml,河口区的浮游病毒丰度都明显高于近海水域病毒丰度 (P<0.01).在垂直分布上,冬、春两季长江口水域水深小于10m的站位,表层浮游病毒丰度与底层病毒丰度无明显差别,水深大于10m的站位,表层水样的浮游病毒丰度都高于10m水层病毒丰度,说明长江口浮游病毒的垂直分布与站位总水深有关.还通过比较各站点VDC与叶绿素a含量的数据,分析了二者之间的相关性:冬季浮游病毒丰度与叶绿素a含量成正相关性;春季浮游病毒丰度与叶绿素a含量成负相关性,但病毒丰度受叶绿素a含量的影响仅为10%-11%.  相似文献   
74.
Estuaries are characterised by highly variable environmental conditions largely driven by tidal and atmospheric forces. This study investigates variation in the physical environment and the composition of the seston on various temporal scales in the Quempillén estuary, southern Chile. The water column was sampled throughout the tidal cycle at various times of the year. Total particulate matter, particulate inorganic matter, particulate organic matter, particle numbers, total particle volume, proximate biochemical composition and energy content of the seston, chlorophyll a and chloropigments were routinely measured. In each of the months in which sampling took place, two or three tidal cycles were examined. The information not only helps to explain the dynamics of the estuary, but is essential for an understanding of the physiology and ecology of the suspension-feeders which exploit the seston as a food source, the most dominant being the gastropod Crepipatella dilatata. Temperature and salinity were generally highest during summer, but seston quality, defined by energy content and biochemical composition (lipid, protein and carbohydrate) was higher at the end of winter and during spring. Chlorophyll a values were greatest in late spring (November). Many of the variables studied changed frequently according to the phase of the tidal cycle, and in several cases significant differences were observed among tidal cycles from the same month of the same year. In general the variables measured did not exhibit consistent patterns linked to the tidal cycle, possibly because any such patterns were masked by atmospheric conditions (wind and rain) that dominate the region and greatly influence the estuary. The quantity and quality of the seston available to suspension-feeders is largely determined by these atmospheric forces, which cause an influx of terrigenous material from adjacent areas and also resuspend bottom sediment. These effects are magnified by the shallowness of the estuary (<2 m depth). The food supply for C. dilatata and other suspension-feeders therefore varies on temporal scales varying from hourly (tidal cycle) to daily/weekly (atmospheric forces) to monthly (seasonal influences), but inhibition of feeding by low salinity sometimes limits the ability of C. dilatata to exploit fully the available organic matter.  相似文献   
75.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   
76.
Little is known about long-term changes in estuarine fish populations and related environmental variations. Fishes in the temporarily open/closed East Kleinemonde Estuary were sampled bi-annually, in summer and winter, using seine and gill nets between December 1994 and July 2005. A total of 18 families, represented by 33 species, were recorded. The 10 most abundant species caught were consistently recorded in catches each year, but CPUE of individual species varied on an annual basis and this can often be related to mouth state. Multivariate analyses of the annual marine fish community identified two distinct groups, with more species recorded during years that succeeded spring (September to November) mouth-opening events than in years following no mouth-opening events in spring. Interannual community stability (IMD) and seriation (IMS) also increased from the years following no opening events in spring to the years that succeeded spring opening events. These results highlight the importance of the timing of mouth opening to the marine fish community in a temporarily open/closed estuary. This study reinforces the importance of long-term studies to understanding community changes in estuaries caused by environmental variations over different time scales.  相似文献   
77.
In the upper Schelde estuary in 2002, phytoplankton biomass and community composition were studied using microscopic and pigment analyses. Chlorophyll a concentration was a good predictor of phytoplankton biomass estimated from cell counts and biovolume measurements. The phytoplankton carbon to chlorophyll a ratio, however, was often unrealistically low (<10). CHEMTAX was used to estimate the contribution of the major algal groups to total chlorophyll a. The dominant algal groups were diatoms and chlorophytes. While diatom equivalents in chlorophyll a predicted diatom biomass relatively well, chlorophyte equivalents in chlorophyll a were only weakly related to chlorophyte biomass. The pigment-based approach to study phytoplankton overestimated phytoplankton biomass in general and chlorophyte biomass in particular in late autumn and winter, when phytoplankton biomass was low. A possible explanation for this overestimation may be the presence of large amounts of vascular plant detritus in the upper Schelde estuary. Residual chlorophyll a, chlorophyll b and lutein in this detritus may result in an overestimation of total phytoplankton and chlorophyte biomass when the contribution of phytoplankton to total particulate organic matter is low.  相似文献   
78.
The inter-annual variability in phytoplankton summer blooms in the upper reaches of the Schelde estuary was investigated between 1996 and 2005 by monthly sampling at 10 stations. The large inter-annual variations of the chlorophyll a concentration in the freshwater tidal reaches were independent from variations in chlorophyll a in the tributary river Schelde. Summer mean chlorophyll a concentrations were significantly negatively correlated with flushing rate (Spearman correlation: r = −0.67, p = 0.05, n = 9) but not with temperature, irradiance and suspended particulate matter or dissolved silica (DSi) concentrations. During dry summers, low flushing rates permitted the development of dense phytoplankton populations in the upper part of the estuary, while during wet summers high flushing rates prevented the development of dense phytoplankton blooms. Flushing rate was also found to be important for the phytoplankton community composition. At low flushing rates, the community was dominated by diatoms that developed within the upper estuary. At high flushing rates, chlorophytes imported from the tributary river Schelde became more important in the phytoplankton community. The position of the chlorophyll a maximum shifted from the head of the estuary when flushing rates were low, to more downstream when flushing rates were high. Although DSi concentrations tended to be lower during years of high phytoplankton (mainly diatom) biomass, the relation with flushing rate was not significant.  相似文献   
79.
The airborne laser scanning LIDAR (LIght Detection And Ranging) provides high-resolution Digital Terrain Models (DTM) that have been applied recently to the characterization, quantification and monitoring of coastal environments. This study assesses the contribution of LIDAR altimetry and intensity data, topographically-derived features (slope and aspect), and multi-spectral imagery (three visible and a near-infrared band), to map coastal habitats in the Bidasoa estuary and its adjacent coastal area (Basque Country, northern Spain). The performance of high-resolution data sources was individually and jointly tested, with the maximum likelihood algorithm classifier in a rocky shore and a wetland zone; thus, including some of the most extended Cantabrian Sea littoral habitats, within the Bay of Biscay. The results show that reliability of coastal habitat classification was more enhanced with LIDAR-based DTM, compared with the other data sources: slope, aspect, intensity or near-infrared band. The addition of the DTM, to the three visible bands, produced gains of between 10% and 27% in the agreement measures, between the mapped and validation data (i.e. mean producer's and user's accuracy) for the two test sites. Raw LIDAR intensity images are only of limited value here, since they appeared heterogeneous and speckled. However, the enhanced Lee smoothing filter, applied to the LIDAR intensity, improved the overall accuracy measurements of the habitat classification, especially in the wetland zone; here, there were gains up to 7.9% in mean producer's and 11.6% in mean user's accuracy. This suggests that LIDAR can be useful for habitat mapping, when few data sources are available. The synergy between the LIDAR data, with multi-spectral bands, produced high accurate classifications (mean producer's accuracy: 92% for the 16 rocky habitats and 88% for the 11 wetland habitats). Fusion of the data enabled discrimination of intertidal communities, such as Corallina elongata, barnacles (Chthamalus spp.), and stands of Spartina alterniflora and Phragmites australis, which presented misclassification when conventional visible bands were used alone. All of these results were corroborated by the kappa coefficient of agreement. The high classification accuracy found here, selecting data sources, highlights the value of integrating LIDAR data with multi-spectral imagery for habitat mapping in the intertidal complex fringe.  相似文献   
80.
The variability of bottom dissolved oxygen (DO) in Long Island Sound, New York, is examined using water quality monitoring data collected by the Connecticut Department of Environmental Protection from 1995 to 2004. Self-organizing map analysis indicates that hypoxia always occurs in the Narrows during summer and less frequently in the Western and the Central Basins. The primary factor controlling the bottom DO, changes spatially and temporally. For non-summer seasons, the levels of bottom DO are strongly associated with water temperature, which means DO availability is primarily driven by solubility. During summer, stratification intensifies under weak wind conditions and bottom DO starts to decrease and deviate from the saturation level except for stations in the Eastern Basin. For the westernmost and shallow (<15 m) stations, bottom DO is correlated with the density stratification (represented by difference between surface and bottom density). In contrast, at deep stations (>20 m), the relationship between oxygen depletion and stratification is not significant. For stations located west of the Central Basin, bottom DO continues to decrease during summer until it reaches its minimum when bottom temperature is around 19–20 °C. In most cases the recovery to saturation levels at the beginning of fall is fast, but not necessarily associated with increased wind mixing. Therefore, we propose that the DO recovery may be a manifestation of either the reduced microbial activity combined with the depletion of organic matter or horizontal exchange. Hypoxic volume is weakly correlated to the summer wind speed, spring total nitrogen, spring chlorophyll a, and maximum river discharge. When all variables are combined in a multiple regression, the coefficient of determination (r2) is 0.92. Surprisingly, the weakest variable is the total nitrogen, because when it is excluded the coefficient r2 only drops to 0.84. Spring bloom seems to be an important source of organic carbon pool and biological uptake of oxygen plays a more crucial role in the seasonal evolution of bottom DO than previously thought. Our results indicate that the reassessment phase of the Long Island Sound Total Maximum Daily Load policy on nitrogen loading will most likely fail, because it ignores the contributions of the spring organic carbon pool and river discharge. Also, it is questionable whether the goal of 58.5% anthropogenic nitrogen load reduction is enough.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号