首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   8篇
  国内免费   45篇
地球物理   7篇
地质学   90篇
海洋学   3篇
天文学   1篇
自然地理   2篇
  2024年   1篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
41.
The c. 500 m thick Middle Jurassic sandstones of the fluvial Bristol Elv and marine Pelion Formations of the East Greenland Basin are evaluated here in order to improve the understanding of the processes that influenced the diagenetic evolution. The study may help to predict the reservoir properties of sandstones affected by magmatism and faulting, both in general and specifically in undrilled areas on- and offshore East Greenland and, in the Vøring Basin on the Mid-Norwegian shelf. The study shows a variety of authigenic mineral phases dominated by quartz cement, carbonate cement, illite and iron-oxide. One of the clear differences between the two formations is the presence of early carbonate-cemented horizons in the marine sandstones; these horizons are inferred to reflect a primary concentration of biogenic clasts and fossil shells. Intense quartz cementation occurs primarily in the fluvial sandstones but the marine sandstones are also highly quartz-cemented. Two episodes of burial and uplift are recorded in the diagenetic sequence and widespread grain-crushing in coarse-grained intervals is believed to result from overpressure and subsequent compaction due to sudden pressure release along major faults. Maximum burial depths may only have been around 2000–2500 m. Cathodoluminescence analyses show that grain crushing was followed by intense quartz cementation. The quartz cement is to a great deal believed to have formed due to increased surface area from crushing of detrital quartz grains, creating fresh nucleation sites for the quartz. Cathodoluminescence investigations also show that only minor pressure dissolution has taken place between detrital quartz grains and that the ubiquitous quartz cementation displays several growth zones, and was thus in part the result of the introduction of silica-rich extra-formational fluids related to the flow of hot fluids along reactivated faults and increased heat flow and temperature due to magmatism. This interpretation is supported by fluid inclusion homogenization temperatures between 117 and 158 °C in quartz cements. In one of the two study areas, the development of macroscopic stylolites has significantly enhanced quartz cementation, probably in connection with thermal convection flow. As a result of the magmatic and fault-related quartz cementation and illitization, the reservoir quality of the sandstone formations deteriorated and changed drastically.  相似文献   
42.
Processes accompanied the breakup of continents, spreading of ocean floor and continent-ocean transi-tion could trigger large scale melting of the mantle beneath the continent as well as the ocean, and pro-duce mafic magmas with distinct geochemical charac-teristics. Such rocks provide us an important record for unraveling the nature and the time of deep tectonic and magmatic processes during the tectonic evolution of large-scale orogenic belts, such as the Himalayan orogenic belt. As an integrated part of the Himalaya, the Tethyan Himalaya consists of well-developed early Paleozoic to Cenozoic sediments and is noted for de-velopment of spectacular semi-continuous, thousand kilometers long gneiss (or granitic) domes. It has pre-served critical records to address the nature of defor-mation, magmatism, and metamorphism associated with the opening, spreading, and demise of the Neo-Tethyan Ocean and the final continental collision between the Indian and the Eurasian Plate at the early Cenozoic time. In addition, it also could be a type-example to address a number of first-order issues with regard to the tectonic dynamics of passive conti-nental margin during the Wilson-cycle.  相似文献   
43.
张晓晖  翟明国 《岩石学报》2010,26(5):1329-1341
包括前寒武纪克拉通与显生宙造山带两大构造单元的华北北部,古生代时期板块构造体制下古亚洲洋的裂解-扩展-消亡与汇聚大陆边缘的俯冲-碰撞-伸展循环构成了其大陆地壳增生与再造演化的基本图景,并形成了一系列记录这些因果演变连续过程的岩浆侵入与喷发事件。这些物质记录无疑是研究汇聚大陆边缘壳-幔作用和物质交换、大陆地壳演化与大规模成矿作用耦合关系的绝佳窗口。本文在系统总结最近几年积累的年代学和岩石地球化学资料的基础上,以一些带有特定过程印记的标志性岩浆事件为纲领,表征这些古生代岩浆作用形成过程中的地球动力学演变,揭示其所记录的华北北部大陆地壳的多阶段增生与再造演化机制,并初步探讨了有利地球动力学过程制约下的岩浆行为引起的成矿物质聚集效应。  相似文献   
44.
We present an integrated geochronological and sedimentological study that significantly revises the basin and magmatic history associated with lithospheric thinning in southern coastal Peru (15–18°S) since the onset of subduction at ∼530 Ma. Until now, estimating the age of the sedimentary and volcanic rocks has heavily relied on paleontologic determinations. Our new geochronological data, combined with numerous field observations, provide the first robust constraints on their chronostratigraphy, which is discussed in the light of biostratigraphical attributions. A detailed review of the existing local units simplifies the current stratigraphic nomenclature and clarifies its absolute chronology using zircon U–Pb ages. We observe that the Late Paleozoic to Jurassic stratigraphy of coastal southern Peru consists of two first-order units, namely (1) the Yamayo Group, a sedimentary succession of variable (0–2 km) thickness, with apparently no nearby volcanic lateral equivalent, and (2) the overlying Yura Group, consisting of a lower, 1–6 km-thick volcanic and volcaniclastic unit, the Chocolate Formation, and an upper, 1–2 km-thick sedimentary succession that are in markedly diachronous contact across the coeval arc and back-arc. We date the local base of the Chocolate Formation, and thus of the Yura Group, to 216 Ma, and show that the underlying Yamayo Group spans a >110 Myr-long time interval, from at least the Late Visean to the Late Triassic, and is apparently devoid of significant internal discontinuities. The age of the top of the Chocolate Formation, i.e. of the volcanic arc pile, varies from ∼194 Ma to less than ∼135 Ma across the study area. We suggest that this simplified and updated stratigraphic framework can be reliably used as a reference for future studies.  相似文献   
45.
Thermochronological studies of Variscan basement in Iberia yield cooling ages typically younger than ~ 200 Ma. In this paper, we explore the regional implications of this recurrent age maximum by examination of low and high temperature thermochronological datasets from all over Iberia. Based on these results, we show that in general the lack of cooling ages older than 200 Ma is the result of several important regional periods of thermal resetting. Resetting took place in areas of extension and burial during the Mesozoic break-up of Pangea. Evidence for large scale magmatism and mineralisation is found in Iberia during the Mesozoic, since at that time Iberia formed part of the Central Atlantic Magmatic Province and a large mineralization province extending from North Africa to Western Europe. Numerical modelling allows us to assess the conditions under which rocks in the upper crust may have been thermally reset and the mechanisms likely involved. Results show that active rifting combined with shallow magmatism, and to a lesser extent deep sedimentary burial, could have led to an increase of the geothermal gradient up to ~ 73 °C/km and the reset of thermochronometers with closure temperatures up to 200 °C. Yet, we suggest that also hydrothermal activity, associated to extensional basins, played an important role to the increase of temperatures of some basement rocks above 300 °C.  相似文献   
46.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   
47.
运用LA-ICP-MS锆石U-Pb同位素定年的方法测定了滇西三江造山带中段马登盆地内的2件富碱火山岩的年龄。结果表明马登盆地内粗安质火山岩形成年龄约在35Ma。富碱火山岩的形成时间与滇西三江造山带南段中东带内的新生代富碱斑岩岩浆作用高峰期一致,同样属于青藏高原后碰撞岩浆作用的时间范围内,这些富碱岩浆岩的岩浆活动是对印度-欧亚大陆巨大碰撞的一种响应。  相似文献   
48.
The protracted tectonic and magmatic record of cratons over the Archaean Eon has been classically interpreted in terms of long-lived shallow-dipping subduction or repeated mantle plumes. In this paper, we use the 1D conductive heat equation to model the evolution of the geotherm of a generic felsic-dominated Archaean cratonic nuclei solely considering the secular decay of radioactive isotopes (238U, 235U, 232Th, and 40K), responsible for heat production in the crust. Using a range of plausible parameters for crustal thickness, lithospheric thickness, and surface heat flux, this modelling shows that Archaean crust was characterized by an initially high geothermal gradient at 3.5 Ga, with a Moho temperature close to 900 °C, and that it might have remained partially molten for about one billion years. The existence of a partially molten crust for an extended period of time offers an alternative option to shallow-dipping subduction or repeated mantle plumes for the understanding of the peculiar tectonic evolution of Archaean cratons marked by (i) protracted high-temperature metamorphism and magmatism associated with crustal differentiation, and (ii) widespread deformation characterized by structural domes attributed to the development of crustal-scale gravitational instabilities.  相似文献   
49.
本文以北京侏罗纪煤田为例详细研究了岩浆活动对聚煤作用的影响。聚煤前、聚煤过程中和聚煤后的岩浆活动对煤系的形成和保存都有影响:煤系形成前和形成过程中的岩浆活动通过控制成煤盆地的基底地形和成煤盆地的水深来影响聚煤作用;煤系形成后的岩浆侵入,使煤系变质并破坏煤层。  相似文献   
50.
Subvolcanic ring complexes are unusual in that they preserve a rapidly frozen record of intrusive events. This sequential history is generally lost or complicated in plutons owing to mixing and mingling in a dynamic state. Thus, subvolcanic ring complexes are more like erupted rocks in their preservation of instantaneous events, but the self-contained nature of the complexes allows detailed structural and chemical work to be conducted in environments where the relative timing between individual magmatic events is commonly well preserved.

We suggest that development of subvolcanic ring complexes in the western Peninsular Ranges Batholith (PRB) involved the following three-stage generalized sequence: (1) fracturing of the roof above a buoyant or overpressured magma chamber, which resulted in moderately inward-dipping conical fractures that locally hosted cone sheets; (2) subsequent loss of magma from the chamber, combined with degassing of the melt, which facilitated collapse of the roof along near-vertical ring faults that locally hosted ring dikes; and (3) resurgence of the chamber, and/or intrusion of a broadly cogenetic nested pluton, which locally destroyed evidence for the earlier history of the system. This sequence has been repeated twice in one of the ring complexes that we have identified, which resulted in nested intrusive centers.

Calderas, subvolcanic ring complexes and plutons may represent progressively deeper sections through linked magma plumbing systems, and the systematic occurrences of these features in the western PRB are consistent with progressively deeper along-strike exposures of the batholith from south to north over a distance greater than 250 km.

In addition to subvolcanic complexes in the western PRB, deeper crustal levels exposed in the transition zone between eastern and western parts of the batholith preserve ring complexes emplaced at depths of up to 18 km. Occurrence of these deeper-level complexes suggests either that caldera subsidence can extend to mid-crustal levels or that other processes can produce ring complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号