首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9213篇
  免费   1446篇
  国内免费   1588篇
测绘学   2837篇
大气科学   809篇
地球物理   1619篇
地质学   3835篇
海洋学   1092篇
天文学   735篇
综合类   682篇
自然地理   638篇
  2024年   26篇
  2023年   75篇
  2022年   326篇
  2021年   410篇
  2020年   425篇
  2019年   484篇
  2018年   331篇
  2017年   503篇
  2016年   482篇
  2015年   510篇
  2014年   604篇
  2013年   662篇
  2012年   634篇
  2011年   648篇
  2010年   492篇
  2009年   593篇
  2008年   641篇
  2007年   587篇
  2006年   574篇
  2005年   549篇
  2004年   474篇
  2003年   355篇
  2002年   358篇
  2001年   236篇
  2000年   223篇
  1999年   175篇
  1998年   164篇
  1997年   144篇
  1996年   94篇
  1995年   94篇
  1994年   85篇
  1993年   74篇
  1992年   57篇
  1991年   33篇
  1990年   37篇
  1989年   26篇
  1988年   21篇
  1987年   8篇
  1986年   9篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We present results from the Chandra X-ray Observatory's extensive campaign studying Comet 9P/Tempel 1 (T1) in support of NASA's Deep Impact (DI) mission. T1 was observed for ∼295 ks between 30th June and 24th July 2005, and continuously for ∼64 ks on July 4th during the impact event. X-ray emission qualitatively similar to that observed for the collisionally thin Comet 2P/Encke system [Lisse, C.M., Christian, D.J., Dennerl, K., Wolk, S.J., Bodewits, D., Hoekstra, R., Combi, M.R., Mäkinen, T., Dryer, M., Fry, C.D., Weaver, H., 2005b. Astrophys. J. 635 (2005) 1329-1347] was found, with emission morphology centered on the nucleus and emission lines due to C, N, O, and Ne solar wind minor ions. The comet was relatively faint on July 4th, and the total increase in X-ray flux due to the Deep Impact event was small, ∼20% of the immediate pre-impact value, consistent with estimates that the total coma neutral gas release due to the impact was 5×106 kg (∼10 h of normal emission). No obvious prompt X-ray flash due to the impact was seen. Extension of the emission in the direction of outflow of the ejecta was observed, suggesting the presence of continued outgassing of this material. Variable spectral features due to changing solar wind flux densities and charge states were clearly seen. Two peaks, much stronger than the man-made increase due to Deep Impact, were found in the observed X-rays on June 30th and July 8th, 2005, and are coincident with increases in the solar wind flux arriving at the comet. Modeling of the Chandra data using observed gas production rates and ACE solar wind ion fluxes with a CXE mechanism for the emission is consistent, overall, with the temporal and spectral behavior expected for a slow, hot wind typical of low latitude emission from the solar corona interacting with the comet's neutral coma, with intermittent impulsive events due to solar flares and coronal mass ejections.  相似文献   
992.
The BL Lac-type object 3C 66A was observed at the Crimean Astrophysical Observatory during the international project OJ-94. Observations were made over 10 nights from February through December 2003 at the Cassegrain focus of the 125-cm AZT-11 telescope with a photopolarimeter capable of simultaneous measurements in the UBVRI bands. In the course of our measurements the brightness of the object increased by more than 1 magnitude in all these bands. Its color indices varied and the degree of polarization decreased from ∼16% in February to ∼3% at the end of our observations. In December 2003 a rapid change in the position angle from 15° to 40° was noticed. The spectral energy distribution Fn is well described by a power law with a spectral index a (Fνν α . The increase in brightness was accompanied by a reduction in the spectral index. The most probable mechanism for the observed changes in the brightness, degree of polarization, and spectral index may be a decrease in the magnetic field strength or a change in its configuration owing to a increase in the chaotic component of the field. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 41–59 (February 2006).  相似文献   
993.
Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3-body problem. Additionally, we also continue to this restricted problem the so called “comet orbits”. An erratum to this article can be found at  相似文献   
994.
Results are obtained about formal stability and instability of Hamiltonian systems with three degrees of freedom, two equal frequencies and the matrix of the linear part is not diagonalizable, in terms of the coefficients of the development in Taylor series of the Hamiltonian of the system. The results are applied to the study of stability of the Lagrangian solutions of the Three Body-Problem in the case in which the center of mass is over the curve ρ*, on the border of the region of linear stability of Routh. The curve ρ* is divided symmetrically in three arcs in such a way that if the center of mass of the three particles lies on the central arc, the Lagrangian solution is unstable in the sense of Liapunov (in finite order), while if the center of mass determines one point that lies on one of the other two arcs of ρ*, then the Lagrangian solution is formally stable.  相似文献   
995.
3S集成 ,特别是广域网的 3S动态集成 ,是地理信息产业的发展趋势和方向 ,其归宿应该是数字地球。 3S集成系统用户应用服务平台搭建技术在概念层面与因特网 (万维网 )技术融合。开放的面向用户动态跟踪和导航用途的 3S集成系统 ,与因特网通信接口技术和用户界面技术相关。因特网 3S集成系统的功能及其运行效率是其具有实用价值的基础。  相似文献   
996.
We studied the radio source associated with the ultraluminous X-ray source in NGC 5408  ( L X≈ 1040 erg s−1)  . The radio spectrum is steep (index  ≈−1  ), consistent with optically thin synchrotron emission, not with flat-spectrum core emission. Its flux density (≈0.28 mJy at 4.8 GHz, at a distance of 4.8 Mpc) was the same in the March 2000 and December 2004 observations, suggesting steady emission rather than a transient outburst. However, it is orders of magnitude higher than expected from steady jets in stellar-mass microquasar. Based on its radio flux and spectral index, we suggest that the radio source is either an unusually bright supernova remnant, or, more likely, a radio lobe powered by a jet from the black hole (BH). Moreover, there is speculative evidence that the source is marginally resolved with a radius ∼30 pc. A faint H  ii region of similar size appears to coincide with the radio and X-ray sources, but its ionization mechanism remains unclear. Using a self-similar solution for the expansion of a jet-powered electron–positron plasma bubble, in the minimum-energy approximation, we show that the observed flux and (speculative) size are consistent with an average jet power  ≈ 7 × 1038 erg s−1∼ 0.1 L X∼ 0.1 L Edd  , an age ≈105 yr, a current velocity of expansion ≈80 km s−1. We briefly discuss the importance of this source as a key to understand the balance between luminosity and jet power in accreting BHs.  相似文献   
997.
998.
999.
1000.
It is shown that the energy dependence of the time-lags in Cygnus X-1 excludes any significant contribution of the standard reflected component to the observed lags. The conclusion is valid in the     frequency range where time-lags have been detected with sufficient significance. In fact, the data hint that the reflected component is working in the opposite direction, reducing the lags at energies where the contribution of the reflected component is significant.
We argue that the observed logarithmic dependence of time-lags on energy could be due to the small variations of the spectral index in the frame of a very simple phenomenological model. We assume that an optically thin flow/corona, emitting a power law like spectrum, is present at a range of distances from the compact object. The slope of the locally emitted spectrum is a function of distance, with the hardest spectrum emitted in the innermost region. If perturbations with different time-scales are introduced to the accretion flow at different radii, then X-ray lags naturally appear, caused by the inward propagation of perturbations on the diffusion time-scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号