首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9538篇
  免费   2299篇
  国内免费   2749篇
测绘学   72篇
大气科学   256篇
地球物理   1170篇
地质学   10159篇
海洋学   1210篇
天文学   24篇
综合类   321篇
自然地理   1374篇
  2024年   117篇
  2023年   312篇
  2022年   514篇
  2021年   637篇
  2020年   528篇
  2019年   653篇
  2018年   563篇
  2017年   678篇
  2016年   719篇
  2015年   581篇
  2014年   717篇
  2013年   759篇
  2012年   700篇
  2011年   645篇
  2010年   584篇
  2009年   697篇
  2008年   643篇
  2007年   649篇
  2006年   550篇
  2005年   492篇
  2004年   406篇
  2003年   342篇
  2002年   302篇
  2001年   230篇
  2000年   216篇
  1999年   225篇
  1998年   176篇
  1997年   182篇
  1996年   137篇
  1995年   116篇
  1994年   112篇
  1993年   88篇
  1992年   93篇
  1991年   56篇
  1990年   37篇
  1989年   35篇
  1988年   34篇
  1987年   10篇
  1986年   13篇
  1985年   6篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   1篇
  1980年   6篇
  1979年   5篇
  1977年   2篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 6 毫秒
151.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   
152.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
153.
The nature and origin of the sediments and crust of the Murray Ridge System and northern Indus Fan are discussed. The uppermost unit consists of Middle Miocene to recent channel–levee complexes typical of submarine fans. This unit is underlain by a second unit composed of hemipelagic to pelagic sediments deposited during the drift phase after the break-up of India–Seychelles–Africa. A predrift sequence of assumed Mesozoic age occurring only as observed above basement ridges is composed of highly consolidated rocks. Different types of the acoustic basement were detected, which reflection seismic pattern, magnetic anomalies and gravity field modeling indicate to be of continental character. The continental crust is extremely thinned in the northern Indus Fan, lacking a typical block-faulted structure. The Indian continent–ocean transition is marked on single MCS profiles by sequences of seaward-dipping reflectors (SDR). In the northwestern Arabian Sea, the Indian plate margin is characterized by several phases of volcanism and deformation revealed from interpretation of multichannel seismic profiles and magnetic anomalies. From this study, thinned continental crust spreads between the northern Murray Ridge System and India underneath the northern Indus Fan.  相似文献   
154.
Heat flow and thermal modeling of the Yinggehai Basin, South China Sea   总被引:9,自引:0,他引:9  
Geothermal gradients are estimated to vary from 31 to 43 °C/km in the Yinggehai Basin based on 99 temperature data sets compiled from oil well data. Thirty-seven thermal conductivity measurements on core samples were made and the effects of porosity and water saturation were corrected. Thermal conductivities of mudstone and sandstone range from 1.2 to 2.7 W/m K, with a mean of 2.0±0.5 W/m K after approximate correction. Heat flow at six sites in the Yinggehai Basin range from 69 to 86 mW/m2, with a mean value of 79±7 mW/m2. Thick sediments and high sedimentation rates resulted in a considerable radiogenic contribution, but also depressed the heat flow. Measurements indicate the radiogenic heat production in the sediment is 1.28 μW/m3, which contributes 20% to the surface heat flow. After subtracting radiogenic heat contribution of the sediment, and sedimentation correction, the average basal heat flow from basement is about 86 mW/m2.Three stages of extension are recognized in the subsidence history, and a kinematic model is used to study the thermal evolution of the basin since the Cenozoic era. Model results show that the peak value of basal heat flow was getting higher and higher through the Cenozoic. The maximum basal heat flow increased from 65 mW/m2 in the first stage to 75 mW/m2 in the second stage, and then 90 mW/m2 in the third stage. The present temperature field of the lithosphere of the Yinggehai Basin, which is still transient, is the result of the multistage extension, but was primarily associated with the Pliocene extension.  相似文献   
155.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   
156.
We show that spurious large non-double-couple components can be obtained in inversions for the full deviatoric moment tensor for shallow crustal earthquakes due to inaccurate Earth models. The traditional “best double-couple” solution does not in general provide an optimal estimate of a double-couple mechanism, and is only reliable when the non-double-couple component of the full deviatoric solution is small. The inverse problem for the moment tensors of the 1998 Antarctic Plate and 2000 Wharton Basin strike-slip earthquakes is shown in each case to have two well-fitting minima in the misfit function of pure double-couple solutions. Such pairs of solutions are most likely to exist for earthquakes which are close either to vertical strike-slip or to dip-slip on a fault plane dipping at 45°. It is shown theoretically that these pairs of solutions arise from the combination of the pure double-couple constraint and the instability of two elements of the moment tensor. No significant non-double-couple component is found for the shallow thrusting 1996 Biak, Indonesia earthquake.  相似文献   
157.
The Gustav Group of the James Ross Basin, Antarctic Peninsula, forms part of a major Southern Hemisphere Cretaceous reference section. Palynological data, chiefly from dinoflagellate cysts, integrated with macrofaunal evidence and strontium isotope stratigraphy, indicate that the Gustav Group, which is approximately 2.6 km thick, is Aptian–Coniacian in age. Aptian–Coniacian palynofloras in the James Ross Basin closely resemble coeval associations from Australia and New Zealand, and Australian palynological zonation schemes are applicable to the Gustav Group. The lowermost units, the coeval Pedersen and Lagrelius Point formations, have both yielded early Aptian dinoflagellate cysts. Because the overlying Kotick Point Formation is of early to mid Albian age, the Aptian/Albian boundary is placed, questionably, at the Lagrelius Point Formation–Kotick Point Formation boundary on James Ross Island, and this transition may be unconformable. Although the Kotick Point Formation is largely early Albian on dinoflagellate cyst evidence, the uppermost part of the formation appears to be of mid Albian age. This differentiation of the early and mid Albian has refined the age of the formation, previously considered to be Aptian–Albian, based on macrofaunal evidence. The Whisky Bay Formation is of late Albian to latest Turonian age on dinoflagellate cyst evidence and this supports the macrofaunal ages. Late Albian palynofloras have been recorded from the Gin Cove, lower Tumbledown Cliffs, Bibby Point and the lower–middle Lewis Hill members. However, the Cenomanian age of the upper Tumbledown Cliffs and Rum Cove members, based on molluscan evidence, is not supported by the dinoflagellate cyst floras and further work is required on this succession. The uppermost part of the Whisky Bay Formation in north-west James Ross Island is of mid to late Turonian age and this is confirmed by strontium isotope stratigraphy. The uppermost unit, the Hidden Lake Formation, is Coniacian in age on both palaeontological and strontium isotope evidence. The uppermost part of the formation appears to be early Santonian based on dinoflagellate cysts, but strontium isotope stratigraphy constrains this as being no younger than late Coniacian. This refined palynostratigraphy greatly improves the potential of the James Ross Basin as a major Cretaceous Southern Hemisphere reference section.  相似文献   
158.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   

159.
The isotopic content of rainfall was measured in Niamey (Niger) over a period of eight years (1992–1999). Seasonal distribution of rainy events depends on the monsoon movement over the region. At the beginning and at the end of the rainy season, low rainfall, high temperatures and low relative humidity favour isotopic enrichment. In the middle of the rainy season, heavy rainfall, low temperatures and relative humidity close to saturation lead to isotopically depleted contents because of the mass effect; moreover, in the case of low rainfall, marked vertical convective development favours high altitude condensation. How far the Intertropical Front moves north, determines the quality of the rainy season and influences the isotopic contents. Thus the isotopic contents of rainfall are good climatic indicators. To cite this article: J.-D. Taupin et al., C. R. Geoscience 334 (2002) 43–50  相似文献   
160.
The updated study shows that the taphrogenesis of basement of the Fushun Basin is not a kind of instantaneous process. It intensified gradually and went to extreme in the sedimentary stage of the Guchengzi formation, and then, it weakened rapidly and stopped soon afterwards; the depression did not take place after the taphrogenesis. On the contrary, it almost happened simultaneously with the taphrogenesis. The depression went at a high speed from the beginning of the sedimentary period of the Xilutian formation, and then weakened gradually in the sedimentary period of the Gengjiajie formation. The evolution course of the synsedimentary structure of the Fushun Basin can be summarized as the following six stages: slow taphrogenesis and high speed depression to accelerated taphrogenesis and high speed depression to high speed taphrogenesis and high speed depression to retarded taphrogenesis and high speed depression to gradual halt of taphrogenesis and reduced depression to slow depression and gradual halt of depression. The tectonic evolution resulted in the formation of the "lower taphrogenesis and upper depression" structure. The formation of the binary structure might be due to the suspension of taphrogenesis and the change of the regional structure stress field, but the depression kept going. The result of calculation combining the analysis of the synsedimentary structural frame, the back-stripping method of the subsidence history of the basin basement and the simulation of thermo-settlement history indicates that the great sedimentary space required by the "upper depression part" consists of two parts, namely, 40% from compaction of sediments and 60% from slow depression of the basin basement during a long period of time. Gradual halt of the depression in the Fushun Basin may be attributed to the reversal of the lithosphere hot-recession and gravity isostasy adjustment which may be the result of new hot-events in the depths and accompanied invasion of extremely thick diabase sill, thus revealing a new forming mechanism of "fault subsidence at the base and depression on the top" structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号