首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   97篇
  国内免费   20篇
测绘学   3篇
大气科学   9篇
地球物理   238篇
地质学   127篇
海洋学   73篇
天文学   6篇
综合类   4篇
自然地理   15篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   18篇
  2019年   10篇
  2018年   20篇
  2017年   16篇
  2016年   19篇
  2015年   19篇
  2014年   22篇
  2013年   22篇
  2012年   15篇
  2011年   28篇
  2010年   15篇
  2009年   26篇
  2008年   24篇
  2007年   20篇
  2006年   16篇
  2005年   9篇
  2004年   14篇
  2003年   16篇
  2002年   15篇
  2001年   12篇
  2000年   6篇
  1999年   11篇
  1998年   9篇
  1997年   6篇
  1996年   11篇
  1995年   9篇
  1994年   9篇
  1993年   10篇
  1992年   6篇
  1991年   1篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1954年   1篇
排序方式: 共有475条查询结果,搜索用时 31 毫秒
441.
Damage to buildings observed in recent earthquakes suggests that many old reinforced concrete structures may be vulnerable to the effects of severe earthquakes. One suitable seismic retrofit solution is the installation of steel braces to increase the strength and ductility of a building. Steel bracings have some compelling advantages such as their comparatively low weight, their suitability for prefabrication, and the possibility of openings for utilities, access, and light. The braces are typically connected to steel frames that are fixed to the concrete structure using post‐installed concrete anchors along the perimeter. However, these framed steel braces are not without some disadvantages such as heavier steel usage and greater difficulties during the installation. Therefore, braces without steel frames appear to be an attractive alternative. In this study, braces were connected to gussets furnished with anchor brackets, which were fixed by means of a few post‐installed concrete anchors. The clear structural system and the increased utilization of the anchors allowed the anchorage to be designed precisely and economically. The use of buckling‐restrained braces (BRBs) provides additional benefits in comparison with conventional braces. BRBs improve the energy dissipation efficiency and allow the limitation of the brace force to be taken up by the highly stressed anchorage. Cyclic loading tests were conducted to investigate the seismic performance of BRBs connected with post‐installed anchors used to retrofit reinforced concrete frames. The tests showed that the proposed design method is feasible and increases strength as well as ductility to an adequate seismic performance level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
442.
青藏高原中北部的巴颜喀喇地块是近年来强震最为活跃的地区,自1997年以来在地块周围发生了一系列7级以上地震.2014年于田MS7.3级地震就发生在该地块西边界附近的硝尔库勒盆地南缘,该区是阿尔金断裂、康西瓦断裂和东昆仑断裂等多组不同走向大型走滑活动断裂带的交汇部位,不同断裂走向的突然转变及滑动速率差异使该地区形成局部的拉张应力状态,发育了多条NE和近SN向的左旋正断裂. 通过余震分布、震源机制解结果等资料分析,认为此次地震的发震构造为阿尔金断裂西南端的一条次级断裂——硝尔库勒断裂,地震破裂特征为左旋走滑兼正断性质. 在巴颜喀喇地块这一轮的强震活动中,其北边界和东边界都显示块体向东挤出约7 m的位移量,但块体西边界产生的伸展量明显与整个块体向东的位移量不协调,2014年于田MS7.3级地震是巴颜喀喇地块向东挤出的构造响应和应变调整.模拟结果显示阿尔金主断裂上的库仑应力有所增加,东昆仑—柴达木地块可能为下一个强震活跃区,特别是阿尔金断裂的中西段,是今后应该重点关注和监视的地区.  相似文献   
443.
Buckling plays a fundamental role in the design of steel tanks because of the small thicknesses of the walls of this class of structures. The first part of the paper presents a review of this phenomenon for liquid‐containing circular cylindrical steel tanks that are fully anchored at the base, considering the different buckling modes and especially the secondary buckling occurring in the top part of the tank. A case study based on a cylindrical tank is then introduced in order to investigate various aspects of dynamic buckling. The finite element model of the case study tank is set‐up using the added mass method for fluid modelling. The influence of pre‐stress states caused by hydrostatic pressure and self‐weight on the natural periods of the structure is first studied and it is found that this influence is very small as far as the global behaviour of the tanks is considered, while it is important for local, shell‐type, vibration modes. In the following, the efficiency and sufficiency of different ground motion intensity measures is analysed by means of cloud analysis with a set of 40 recorded accelerograms. In particular, the peak ground displacement has been found being the most efficient and sufficient intensity measure so far as the maximum relative displacement of the tank walls is concerned. Finally, incremental nonlinear time‐history analyses are performed considering the case study structure under recorded earthquake ground motions in order to identify the critical buckling loads and to derive fragility curves for the buckling limit state. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
444.
One of the key limit states of buckling‐restrained braces (BRBs) is global flexural buckling including the effects of the connections. The authors have previously proposed a unified explicit equation set for controlling the out‐of‐plane stability of BRBs based on bending‐moment transfer capacity at the restrainer ends. The proposed equation set is capable of estimating BRB stability for various connection stiffnesses, including initial out‐of‐plane drift effects. However, it is only valid for symmetrical end conditions, limiting application to the single diagonal configuration. In the chevron configuration, the out‐of‐plane stiffness in the two ends differs because of the rotation of the attached beam. In this study, the equation set is extended to BRBs with asymmetric end conditions, such as the chevron configuration. Cyclic loading tests of the chevron configuration with initial out‐of‐plane drifts are conducted, and the results are compared with the proposed equation set, which is formulated as a function of the normalized stiffness of the attached beam. © 2016 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd. © 2016 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   
445.
在两个水平主应力随深度呈线性增加的前提下,通过数学推导,建立了侧压系数、水平最大与水平最小主应力之比(σHh)以及剪应力相对大小μm等应力参数随深度变化的关系式.在此基础上,依据中国大陆1780条二维水压致裂和应力解除的原地应力测量数据,对多个应力参数随深度的变化进行了回归分析.结果显示,中国大陆地壳浅部的侧压系数随深度的变化呈完整的双曲线形态,通过稳定性检验说明,即使缺少较深的原地应力实测数据,只要有一定数量的测试深度超过1500 m的数据,仍然可以得到比较可信的侧压系数回归分析结果,在整个脆性上地壳的物性参数没有本质变化的前提下,可以利用地壳浅部的侧压系数回归分析结果推断脆性上地壳的2个水平主应力的取值范围;相对于侧压系数,在中国大陆地表以下几千米深度范围内,σHH/σ和μm的变化不大,更接近线性分布,σHh的拟合值在1.5左右,μm的拟合值在0.2左右,并且μm的线性集中程度更好.利用μm的大小来判断活动断裂的地震危险性具有一定合理性.  相似文献   
446.
A series of hybrid and cyclic loading tests were conducted on a three‐story single‐bay full‐scale buckling‐restrained braced frame (BRBF) at the Taiwan National Center for Research on Earthquake Engineering in 2010. Six buckling‐restrained braces (BRBs) including two thin BRBs and four end‐slotted BRBs, all using welded end connection details, were installed in the frame specimen. The BRBF was designed to sustain a design basis earthquake in Los Angeles. In the first hybrid test, the maximum inter‐story drift reached nearly 0.030 rad in the second story and one of the thin BRBs in the first story locally bulged and fractured subsequently before the test ended. After replacing the BRBs in the first story with a new pair, a second hybrid test with the same but reversed direction ground motion was applied. The maximum inter‐story drifts reached more than 0.030 rad and some cracks were found on the gusset welds in the second story. The frame responses were satisfactorily predicted by both OpenSees and PISA3D analytical models. The cyclic loading test with triangular lateral force distribution was conducted right after the second hybrid test. The maximum inter‐story drift reached 0.032, 0.031, and 0.008 rad for the first to the third story, respectively. This paper then presents the findings on the local bulging failure of the steel casing by using cyclic test results of two thin BRB specimens. It is found that the steel casing bulging resistance can be computed from an equivalent beam model constructed from the steel core plate width and restraining concrete thickness. This paper concludes with the recommendations on the seismic design of thin BRB steel casings against local bulging failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
447.
In order to enhance the durability of high‐performance buckling‐restrained braces (BRBs) used in bridge engineering, which are expected to withstand severe earthquakes three times without being replaced, aluminum alloys were employed to manufacture BRBs. A series of low‐cycle fatigue tests, including 18 specimens, were conducted to address the low‐cycle fatigue strength of the aluminum alloy BRB. Test results of all specimens show that stable hysteretic curves were obtained without overall buckling occurrence. Failure mode of the welded aluminum alloy BRB is obviously affected by the ribs' welding under the variable or constant strain amplitude condition. Therefore, another type of aluminum alloy BRB, the bolt‐assembled BRB with or without spot‐welded stoppers, is proposed and tested. Results showed that the low‐cycle fatigue performance of bolt‐assembled BRBs with stoppers improved four to five times compared with welded BRBs. However, the stoppers' spot welding has an adverse effect on the failure mode because the crack, which induced the specimen's failure, initiated from the spot weld toes of the stoppers. Both bolt‐assembled BRBs with and without stoppers can meet the cumulative inelastic deformation requirement proposed for high‐performance BRBs under the constant strain amplitude, not larger than 2%. In addition, under the variable strain amplitude condition, only the bolt‐assembled BRB without stoppers has an excellent cumulative inelastic deformation capacity and sustains two cycles of 2.5% strain amplitude. Finally, recommended Manson–Coffin equations and preliminary cumulative damage formulae for welded and bolt‐assembled BRBs are given as the references of the strain‐based damage evaluation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
448.
The design of a three‐story buckling‐restrained braced frame (BRBF) with a single‐diagonal sandwiched BRB and corner gusset was evaluated in cyclic tests of a one‐story, one‐bay BRBF subassembly and dynamic analyses of the frame subjected to earthquakes. The test focused on evaluating (1) the seismic performance of a sandwiched BRB installed in a frame, (2) the effects of free‐edge stiffeners and dual gusset configurations on the corner gusset behavior, (3) the frame and brace action forces in the corner gusset, and (4) the failure mode of the BRBF under the maximum considerable earthquake level. The subassembly frame performed well up to a drift of 2.5% with a maximum axial strain of 1.7% in the BRB. Without free‐edge stiffeners, the single corner gusset plate buckled at a significantly lower strength than that predicted by the specificationof American Institute of Steel Construction (2005). The buckling could be eliminated by using dual corner gusset plates similar in size to the single gusset plate. At low drifts, the frame action force on the corner gusset was of the same magnitude as the brace force. At high drifts, however, the frame action force significantly increased and caused weld fractures at column‐to‐gusset edges. Nonlinear time history analyses were performed on the three‐story BRBF to obtain seismic demands under both design and maximum considerable levels of earthquake loading. The analytical results confirmed that the BRB and corner gusset plate achieved peak drift under cyclic loading test. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
449.
由于生产工艺的要求,开采的原油经常需要在一定的温度和压力下才能顺利输送,而输油过程中的高温和高压会导致海底管线中产生较大的附加应力。管线受到地基土的约束作用后无法自由变形,附加应力的不断累积,造成管线发生整体屈曲变形,埋地的海底管线通常会产生竖直向的整体屈曲变形而影响使用甚至破坏。基于点支撑初始缺陷形式的海底管线,给出了管线竖直向整体屈曲分析的解析解,结合实际工程中铺设的高温高压输油管线进行了整体屈曲分析,揭示了不同温度条件下埋地管线发生竖直向整体屈曲的规律性,提出挖沟掩埋可以有效地防止管线发生温度应力下的整体屈曲  相似文献   
450.
为探讨桩侧地基土反力对高承台嵌岩灌注桩桩身屈曲稳定的影响,假定地基反力系数呈更为复杂的幂分布,基于弹性地基梁理论建立桩土体系总势能方程,采用最小势能原理,导出了桩身屈曲临界荷载与稳定计算长度的解析解,并据此获得了地基反力系数分布模式、桩身自重及桩侧摩阻力等对桩身屈曲稳定的影响规律。工程应用分析结果表明,考虑地基反力系数为一般幂分布时,桩身屈曲分析结果更趋合理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号