首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   215篇
  国内免费   91篇
测绘学   19篇
大气科学   10篇
地球物理   423篇
地质学   1463篇
海洋学   15篇
天文学   1篇
综合类   47篇
自然地理   44篇
  2023年   5篇
  2022年   24篇
  2021年   33篇
  2020年   34篇
  2019年   40篇
  2018年   26篇
  2017年   38篇
  2016年   62篇
  2015年   66篇
  2014年   81篇
  2013年   54篇
  2012年   38篇
  2011年   52篇
  2010年   62篇
  2009年   149篇
  2008年   202篇
  2007年   170篇
  2006年   189篇
  2005年   118篇
  2004年   105篇
  2003年   65篇
  2002年   57篇
  2001年   44篇
  2000年   40篇
  1999年   38篇
  1998年   36篇
  1997年   32篇
  1996年   29篇
  1995年   37篇
  1994年   26篇
  1993年   23篇
  1992年   14篇
  1991年   1篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1982年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有2022条查询结果,搜索用时 406 毫秒
121.
Contamination of groundwater has become a major concern in recent years. Since testing of water quality of all domestic and irrigation wells within large watersheds is not economically feasible, one frequently used monitoring strategy is to develop contamination potential maps of groundwater, and then prioritize those wells located in the potentially highly contaminated areas for testing of contaminants. However, generation of contamination potential maps based on groundwater sensitivity and vulnerability is not an easy task due inherent uncertainty. Therefore, the overall goal of this research is to improve the methodology for the generation of contamination potential maps by using detailed landuse/pesticide and soil structure information in conjunction with selected parameters from the DRASTIC model. The specific objectives of this study are (i) to incorporate GIS, GPS, remote sensing and the fuzzy rule-based model to generate groundwater sensitivity maps, and (ii) compare the results of our new methodologies with the modified DRASTIC Index (DI) and field water quality data. In this study, three different models were developed (viz. DIfuzz, VIfuzz and VIfuzz_ped) and were compared to the DI. Once the preliminary fuzzy logic-based (DIfuzz) was generated using selected parameters from DI, the methodology was further refined through VIfuzz and VIfuzz_ped models that incorporated landuse/pesticide application and soil structure information, respectively. This study was conducted in Woodruff County of the Mississippi Delta region of Arkansas. Water quality data for 55 wells were used to evaluate the contamination potential maps. The sensitivity map generated by VIfuzz_ped with soil structure showed significantly better coincidence results when compared with the field data.  相似文献   
122.
This study was carried out in the Cuenca de la Independencia, a semi-arid basin in Central Mexico. The objective is to describe the main features of a groundwater flow regime under natural conditions, based on groundwater discharge manifestations. Information obtained from paleoecological, paleontological, archaeological and historical data suggests that, prior to heavy development (starting in the 1950s), the hydrogeologic regime was characterized by a larger groundwater availability in a more humid and colder climate. Manifestations associated to groundwater discharges are springs, lagoons, wetlands, saline soils, chalcedony deposits, phreatophytes, thermalism, and artesianism. The different types of manifestations and their position in the basin indicate the influence of groundwater flow systems hierarchically nested, forming concentric zones at ground level. The groundwater flow regime corresponds to a classical gravity-induced flow system with generation of local, intermediate and regional patterns. Integrating several types of data to establish the flow geometry and its dynamics has proven a useful tool to increase understanding of the original groundwater regimes. This approach can also be applied in other over-exploited semi-arid basins.  相似文献   
123.
The arsenic accumulation process in intertidal sediments of Iriomote Island, Japan, is analyzed as a naturally balanced arsenic-fixation system. Major and minor element chemistry is analyzed by X-ray fluorescence photometry, mineralogy is investigated by X-ray diffractometry, and four arsenic compounds are characterized by hydrogen-generated atomic absorption photometry. It is found that arsenic is accumulated by iron hydroxides/oxides precipitated following the decomposition of humic acids in the shallower sediment, and is subsequently incorporated into iron sulfide minerals at depth. The arsenic is immobile during incorporation into arsenic-bearing phases, suggesting that arsenic is unlikely to be released into the porewater under natural conditions in early diagenesis. The formation and decomposition of arsenic-bearing organic compounds appear to be associated with the formation and decomposition of arsenic in oxyhydroxides/oxides, suggesting that microbial activity may play an important role in controlling the behavior of arsenic and arsenic-bearing phases in the sediment column.  相似文献   
124.
The concentration of nutrients in groundwater acts as an indicator to identify the influence of agricultural activities on the shallow subsurface environment. Hence, the present study was carried out to assess nutrient concentration (nitrate, phosphate and potassium) and understand its spatial and seasonal variations in the groundwater of Palar and Cheyyar River basin, Tamil Nadu, India. The groundwater samples collected from 43 wells were analyzed for nutrients once a month from January 1998 to June 1999. Results of the study suggested that agricultural activities, including application of fertilizers, soil mineralization processes and irrigation return flow, are major processes regulating the nutrients chemistry in the groundwater of this region. Groundwater in the sedimentary formation has comparatively higher concentration of nutrients than the groundwater in hard rock formations, which seems to be due to the adsorption of nutrients by the weathered rock materials. The seasonal water level fluctuation shows that rising water level increases nutrients concentration in groundwater due to the agriculture related activities. The results also indicate that nitrate and potassium concentrations are within the recommended drinking water limits, whereas phosphate concentration exceeds its drinking water limit and 35% of the samples are unsuitable for drinking purposes.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
125.
A simple, physically based method is developed in this paper to assist in the allocation of areas with high groundwater potential and for the determination of maximum allowed pumping rate to ensure proper groundwater management. This method utilizes the aquifer physical properties as well as GIS technology to accomplish this purpose. The design of this method was considered to be applicable in areas with little data, such as in most arid regions. This technique was applied to a catchment in an arid environment where qualitative as well as quantitative analyses of the results were undertaken. Locations of available groundwater and rates of maximum allowable pumping were compared with observations and experiments in the field and a good agreement was found. It was concluded that the best groundwater location was in the alluvial area, which represents only 16% of the total aquifer, which is a typical case in arid region catchments. The rate of maximum pumping was estimated to be 65 m3/h. However, to benefit 55% of the area, the maximum pumping rate should only be 40 m3/h with an average rate throughout the area (55%) of about 24 m3/h.This revised version was published online in December 2004 with corrections to the category.  相似文献   
126.
127.
Rainfall is the main source of groundwater recharge in the Gaza Strip area in Palestine. The area is located in the semi-arid zone and there is no source of recharge other than rainfall. Estimation of groundwater recharge from rainfall is not an easy task since it depends on many uncertain parameters. The cumulative rainfall departure (CRD) method, which depends on the water balance principle, was used in this study to estimate the net groundwater recharge from rainfall. This method does not require much data as is the case with other classical recharge estimation methods. The CRD method was carried out using optimisation approach to minimise the root mean square error (RMSE) between the measured and the simulated groundwater head. The results of this method were compared with the results of other recharge estimation methods from literature. It was found that the results of the CRD method are very close to the results of the other methods, but with less data requirements and greater ease of application. Based on the CRD method, the annual amount of groundwater recharge from rainfall in the Gaza Strip is about 43 million m3. An erratum to this article can be found at  相似文献   
128.
Groundwater depletion: A global problem   总被引:19,自引:6,他引:19  
  相似文献   
129.
A hydrochemical investigation was conducted in the Ejina Basin to identify the hydrochemical characteristics and the salinity of groundwater. The results indicate that groundwater in the area is brackish and are significantly zonation in salinity and water types from the recharge area to the discharge area. The ionic ration plot and saturation index (SI) calculation suggest that the silicate rock weathering and evaporation deposition are the dominant processes that determine the major ionic composition in the study area. Most of the stable isotope δ18O and δD compositions in the groundwater is a meteoric water feature, indicating that the groundwater mainly sources from meteoric water and most groundwater undergoes a long history of evaporation. Based on radioactive isotope tritium (3H) analysis, the groundwater ages were approximately estimated in different aquifers. The groundwater age ranges from less than 5 years, between 5 years and 50 years, and more than 50 years. Within 1 km of the river water influence zone, the groundwater recharges from recent Heihe river water and the groundwater age is about less than 5 years in shallow aquifer. From 1 km to 10 km of the river water influence zone, the groundwater sources from the mixture waters and the groundwater age is between 5 years and 50 years in shallow aquifer. The groundwater age is more than 50 years in deep confined aquifer.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号