首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   302篇
  国内免费   52篇
测绘学   109篇
大气科学   52篇
地球物理   574篇
地质学   223篇
海洋学   59篇
天文学   12篇
综合类   19篇
自然地理   28篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   18篇
  2020年   30篇
  2019年   42篇
  2018年   24篇
  2017年   35篇
  2016年   32篇
  2015年   47篇
  2014年   48篇
  2013年   52篇
  2012年   40篇
  2011年   43篇
  2010年   32篇
  2009年   43篇
  2008年   60篇
  2007年   39篇
  2006年   50篇
  2005年   54篇
  2004年   33篇
  2003年   28篇
  2002年   36篇
  2001年   36篇
  2000年   23篇
  1999年   36篇
  1998年   26篇
  1997年   18篇
  1996年   23篇
  1995年   16篇
  1994年   18篇
  1993年   14篇
  1992年   12篇
  1991年   8篇
  1990年   4篇
  1989年   13篇
  1988年   10篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1954年   3篇
排序方式: 共有1076条查询结果,搜索用时 250 毫秒
51.
陇南山区斜坡重力地质作用特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
位于地质构造、地层、地貌、气侯和植被五位一体叠加脆弱带的陇南地区是我国主要滑坡、泥石流、崩塌等斜坡重力地质作用区之一。本文简述了斜坡重力地质作用的概念和类型,着重分析了其垂直分带性、区域性、季节性、周期性、阶段性、继承性和共生性等作用特征,揭示了斜坡重力地质作用的活动规律。  相似文献   
52.
From our interpretation of the Bouguer gravity and aeromagnetic anomalies in south-east Scotland, we conclude that a massive granite batholith underlies the greater part of the eastern Southern Uplands. The granite model which we computed earlier from gravity anomalies in the Tweeddale area fits the observed magnetic anomalies closely, if a normal magnetization of 0.095 A m–1 is assigned, similar to values found for exposed local granites. Further gravity modelling shows that, apart from the Tweeddale boss, the granite shallows to less than 1 km near Lammer Law in East Lothian and extends north of the Lammermuir Fault. A model for the East Lothian volcanics was computed from their aeromagnetic anomalies, then their gravitational effect was combined with that estimated for the Devonian and Carboniferous sediments and the result stripped off the observed gravity field. The residual gravity anomalies were used to generate a two-dimensional model for the granite north of the Lammermuir Fault. The expected tectonic consequences of a massive granite batholith in the eastern Southern Uplands are compared with the known development of faults and sedimentary basins around its margins.  相似文献   
53.
54.
Having the ability to predict enrollment is an important task for any school’s recruiting team. The purpose of this study was to identify significant factors that can be used to predict the spatial distribution of enrollments. As a case study, we used East Tennessee State University (ETSU) pharmacy school, a regional pharmacy school located in the Appalachian Mountains. Through the application of a negative binomial regression model, we found that the most important indicators of enrollment volume for the ETSU pharmacy school were Euclidean distance, probability (based on competing pharmacy schools’ prestige, driving distance between schools and home and tuition costs), and the natural barrier of the Appalachian Mountains. Using these factors, together with other control variables, we successfully predicted the spatial distribution of enrollments for ETSU pharmacy school. Interestingly, gender also surfaced as a variable for predicting the pharmacy school’s enrollment. We found female students are more sensitive to the geographic proximity of home to school.  相似文献   
55.
During the last two decades, important advances have been made in the investigation of gravity waves. However, more efforts are needed to study certain aspects of gravity waves. In the real atmosphere, gravity waves occur with different properties at different altitudes and, most often, simultaneously. In this case, when there is more than one dominant wave, the determination of gravity wave characteristics, such as the vertical wavelength and the phase velocity, is difficult. The interpretation of temperature perturbation plots versus the altitude and time as well as the application of the Fourier spectral analysis can produce errors.Exact knowledge of the wave characteristics is important both for determination of other characteristics, for example, the horizontal wave components, and for study of wave climatology. The wavelet analysis of vertical temperature profiles allows one to examine the wave's location in space. Up to now, gravity waves have been studied mainly by continuous wavelet transformation to determine dominant waves. We apply wavelet analysis to a time series of temperature profiles, observed by the ALOMAR ozone lidar at Andoya, Norway, and by the U. Bonn lidar system at ESRANGE, Sweden, both for determination of the dominant waves and for specifying the vertical wavelengths and the vertical component of the phase velocities. For this purpose, the wavelet amplitude spectra and the wavelet phase spectra are filtered and Hovmöller diagrams for dominant wavelengths are constructed. The advantage of this type of diagrams is that they give clear evidence for the localization of the dominant waves in space and time and for the development of their phase fronts.  相似文献   
56.
The Normalized Full Gradient (NFG) method which was put forward about 50 years ago has been used for downward continuation of gravity potential data, especially in the former Union of Soviet Socialist Republics. This method nullifies perturbations due to the passage of mass depth during downward continuation. The method depends on the downwards analytical continuation of normalized full gradient values of gravity data. Analytical continuation discriminates certain structural anomalies which cannot be distinguished in the observed gravity field. This method has been used in various petroleum and tectonic studies. The Trapeze method was used for the determination of Fourier coefficients during the application of this method. No other techniques for calculating these coefficients have been used. However, the Filon method was used for the determination of Fourier coefficients during the application of the NFG method in this work. This method, rather than the Trapeze method, should be preferred for indicating abnormal mass resources at the lower harmonics. In this study, the NFG method using the Filon method has been applied the first time to theoretical models of gravity profiles as example field at the Hasankale-Horasan petroleum exploration province where successful results were achieved. Hydrocarbon presence was shown on the NFG sections by the application of NFG downward continuation operations on theoretical models. Important signs of hydrocarbon structure on the NFG section for field and model data at low harmonics are obtained more effectively using this method.  相似文献   
57.
J. Li 《Journal of Geodesy》2002,76(4):226-231
 A formula for computing the gravity disturbance and gravity anomaly from the second radial derivative of the disturbing potential is derived in detail using the basic differential equation with spherical approximation in physical geodesy and the modified Poisson integral formula. The derived integral in the space domain, expressed by a spherical geometric quantity, is then converted to a convolution form in the local planar rectangular coordinate system tangent to the geoid at the computing point, and the corresponding spectral formulae of 1-D FFT and 2-D FFT are presented for numerical computation. Received: 27 December 2000 / Accepted: 3 September 2001  相似文献   
58.
 The Somigliana–Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana–Pizzetti gravity Γ(φ,u) as a function of Jacobi spheroidal latitude φ and height u to the order ?(10−10 Gal), and Γ(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ?(10−10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana–Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (λ,φ,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet. Received: 23 June 2000 / Accepted: 2 January 2001  相似文献   
59.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   
60.
Geoid, topography, and the Bouguer plate or shell   总被引:1,自引:1,他引:1  
 Topography plays an important role in solving many geodetic and geophysical problems. In the evaluation of a topographical effect, a planar model, a spherical model or an even more sophisticated model can be used. In most applications, the planar model is considered appropriate: recall the evaluation of gravity reductions of the free-air, Poincaré–Prey or Bouguer kind. For some applications, such as the evaluation of topographical effects in gravimetric geoid computations, it is preferable or even necessary to use at least the spherical model of topography. In modelling the topographical effect, the bulk of the effect comes from the Bouguer plate, in the case of the planar model, or from the Bouguer shell, in the case of the spherical model. The difference between the effects of the Bouguer plate and the Bouguer shell is studied, while the effect of the rest of topography, the terrain, is discussed elsewhere. It is argued that the classical Bouguer plate gravity reduction should be considered as a mathematical construction with unclear physical meaning. It is shown that if the reduction is understood to be reducing observed gravity onto the geoid through the Bouguer plate/shell then both models give practically identical answers, as associated with Poincaré's and Prey's work. It is shown why only the spherical model should be used in the evaluation of topographical effects in the Stokes–Helmert solution of Stokes' boundary-value problem. The reason for this is that the Bouguer plate model does not allow for a physically acceptable condensation scheme for the topography. Received: 24 December 1999 / Accepted: 11 December 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号