首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   19篇
  国内免费   6篇
测绘学   1篇
地球物理   51篇
地质学   57篇
海洋学   3篇
天文学   69篇
综合类   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2014年   6篇
  2013年   3篇
  2011年   18篇
  2010年   10篇
  2009年   15篇
  2008年   13篇
  2007年   12篇
  2006年   17篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   17篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1985年   2篇
排序方式: 共有185条查询结果,搜索用时 140 毫秒
181.
In the rural Guatemalan Central Highlands, drinking water wells are a rare commodity due to lack of data regarding depth and sustainability of groundwater. At a study well in Lemoa, aquifer sustainability and other characteristics were estimated using hydrograph data and Theiss recovery method for pumping tests. These tests showed that while specific capacity remained fairly constant, transmissivity increased, indicating development of the well subsequent to installation of the study well. The time domain electromagnetic (TDEM) method was evaluated at the site as a prospective groundwater prospecting technique. Characterization of subsurface conditions using TDEM is feasible with local subsurface data for correlation; however, it is limited to delineating low electrical resistive zones without geologic data for correlation. Data showed that groundwater produced from volcanic alluvium at approximately 79 m in depth is sustainable at the study area at current use rates.  相似文献   
182.
A landslide located on the Quesnel River in British Columbia, Canada is used as a case study to demonstrate the utility of a multi-geophysical approach to subsurface mapping of unstable slopes. Ground penetrating radar (GPR), direct current (DC) resistivity and seismic reflection and refraction surveys were conducted over the landslide and adjacent terrain. Geophysical data were interpreted based on stratigraphic and geomorphologic observations, including the use of digital terrain models (DTMs), and then integrated into a 3-dimensional model. GPR surveys yielded high-resolution data that were correlated with stratigraphic units to a maximum depth of 25 m. DC electrical resistivity offered limited data on specific units but was effective for resolving stratigraphic relationships between units to a maximum depth of 40 m. Seismic surveys were primarily used to obtain unit boundaries up to a depth of >80 m. Surfaces of rupture and separation were successfully identified by GPR and DC electrical resistivity techniques.  相似文献   
183.
Geophysical methods such as seismic surveying and electrical resistivity imaging appear to be well-adapted to investigate and understand landslide mechanisms. They allow direct and non-intrusive measurement of acoustic velocity and electrical resistivity, two fundamental parameters used to define the physical properties of the reworked moving materials. Both methods were applied at the Super-Sauze site in the French South Alps, where a typical example of an intra-material earthflow-mudslide can be observed. Measurements were taken simultaneously along two orthogonal profiles: one 325 m in length is perpendicular to the axis of the earthflow; the other 235 m in length is located along the axis of the earthflow. The results show a correlation between the seismic and electrical resistivity data, confirming that the simultaneous use of both methods gives complementary information about landslide mechanisms. The seismic data provide information on fracture density variations, whereas the electrical resistivity data provide information on water content variations. To cite this article: G. Grandjean et al., C. R. Geoscience 338 (2006).  相似文献   
184.
With the collection of six years of MGS tracking data and three years of Mars Odyssey tracking data, there has been a continual improvement in the JPL Mars gravity field determination. This includes the measurement of the seasonal changes in the gravity coefficients (e.g., , , , , , ) caused by the mass exchange between the polar ice caps and atmosphere. This paper describes the latest gravity field MGS95J to degree and order 95. The improvement comes from additional tracking data and the adoption of a more complete Mars orientation model with nutation, instead of the IAU 2000 model. Free wobble of the Mars' spin axis, i.e. polar motion, has been constrained to be less than 10 mas by looking at the temporal history of and . A strong annual signature is observed in , and this is a mixture of polar motion and ice mass redistribution. The Love number solution with a subset of Odyssey tracking data is consistent with the previous liquid outer core determination from MGS tracking data [Yoder et al., 2003. Science 300, 299-303], giving a combined solution of k2=0.152±0.009 using MGS and Odyssey tracking data. The solutions for the masses of the Mars' moons show consistency between MGS, Odyssey, and Viking data sets; Phobos GM=(7.16±0.005)×10−4 km3/s2 and Deimos GM=(0.98±0.07)×10−4 km3/s2. Average MGS orbit errors, determined from differences in the overlaps of orbit solutions, have been reduced to 10-cm in the radial direction and 1.5 m along the spacecraft velocity and normal to the orbit plane. Hence, the ranging to the MGS and Odyssey spacecraft has resulted in position measurements of the Mars system center-of-mass relative to the Earth to an accuracy of one meter, greatly reducing the Mars ephemeris errors by several orders of magnitude, and providing mass estimates for Asteroids 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta, and 324 Bamberga.  相似文献   
185.
The exhaustion of coal resources in the shallow part has made deep mining enter into the implementation stage, however the geological environment of deep coal seam is relatively complex; the mining process is threatened by confined water in the basal limestone while the key point of solving water inrush is to check the fracture mechanism of floor strata. A large number of scholars both at home and abroad have explored this issue and the geophysical method has achieved a good effect in probing floor strata. Based on research status analysis of stope floor strata fracture, this paper stated the technological principles of electrical method, electromagnetic method, seismic wave method and new technology-Brillouin Optic Time-Domain Reflectometer (BOTDR) and their application status in probing basal deformation and fracture, and analyzed technical features of different probing methods. It revealed the influencing factors and deficiencies in their application, proposed the idea of total space, multiple parameters, real-time monitoring of stope floor, developed integrated dynamic monitoring alarming system of basal stratum and looked into the development direction of rock water detection technology during the process of coal mining floor strata deformation and fracture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号