In order to model flow and transport in fractured rocks it is important to know the geometry of the fracture network. A stochastic approach is commonly used to generate a synthetic fracture network from the statistics measured at a natural fracture network. The approach presented herein is able to incorporate the structures found in a natural fracture network into the synthetic fracture network. These synthetic fracture networks are the images generated by Iterated Function Systems (IFS) as introduced by Barnsley (1988). The conditions these IFS have to fulfil to determine images resembling fracture networks and the effects of their parameters on the images are discussed. It is possible to define the parameters of the IFS in order to generate some properties of a fracture network. The image of an IFS consists of many single points and has to be suitably processed for further use. 相似文献
The initiation and propagation of directional hydraulic fracturing (DHF) was investigated based on true tri-axial experiment and finite element modeling. The influences of notch angle, notch length and injection rate on the DHF were investigated. The initiation and propagation of DHF was modeled by a 3D nonlinear finite element method. A comparison between experimental investigation and numerical modeling results indicates that there is a good correlation between unbalanced force (UF) and fracturing. UF can be used to predict the hydraulic fracture initiation and propagation. 相似文献
Recently, continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China. Approximately 5000 t of cumulative gold resources have been explored in Jiaodong, which has thus become an internationally noteworthy gold ore cluster. The gold exploration depth has been increased to about 2000 m from the previous <1000 m. To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m, the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named “Deep drillhole ZK01” to a depth of 3266 m. Hence, as reported herein, the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented. ZK01 is, to date, the deepest borehole with an gold intersect in China, and constitutes a significant advance in deep gold prospecting in China. The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources, while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources. The Jiaojia Fault Belt tends to gently dip downward, having dip angles of about 25° and about 20° at vertical depths of 2000 m and 2850 m, respectively. The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing, alteration, mineralization, and tectonic type. The deep zones can generally be categorized from inside outward as cataclastic granite, granitic cataclasite, weakly beresitized granitic cataclasite, beresitized cataclasite, and gouge. These zones exhibit a gradual transitional relation or occur alternately and repeatedly. The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development; that is, the higher the pyrite content, the wider the veins and the higher the gold grade. Compared to the shallow gold ores, the deep-seated gold ores have higher fineness and contain joseite, tetradymite, and native bismuth, suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization. ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane (gouge) and hosted within the Linglong Granite, contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro. These new discoveries are particularly significant because they can help correct mineralization prospecting models, determine favorable positions for deep prospecting, and improve metallogenic prediction and resource potential evaluation. 相似文献
A numerical procedure to determine the equivalent permeability tensor of a fractured rock is presented, using a stochastic REV (Representative Elementary Volume) concept that uses multiple realizations of stochastic DFN (Discrete Fracture Network) models. Ten square DFN models are generated using the Monte Carlo simulations of the fracture system based on the data obtained from a site characterization program at Sellafield, Cumbria, UK. Smaller models with varying sizes of from 0.25 m×0.25 m to 10 m×10 m are extracted from the generated DFN models and are used as two-dimensional geometrical models for calculation of equivalent permeability tensor. The DFN models are also rotated in 30º intervals to evaluate the tensor characteristics of calculated directional permeability. Results show that the variance of the calculated permeability values decreases significantly as the side lengths of the DFN models increase, which justifies the existence of a REV. The REV side length found in this analysis is about 5 m and 8 m with 20% and 10% acceptable variations, respectively. The calculated directional permeability values at the REV size have tensor characteristic that is confirmed by a close approximation of an ellipse in a polar plot of the reciprocal of square roots of the directional permeability.
Many low-efficiency hydrocarbon reservoirs are productive largely because effective reservoir permeability is controlled by faults and natural fractures. Accurate and low-cost information on basic fault and fracture properties, orientation in particular, is critical in reducing well costs and increasing well recoveries. This paper describes how we used an advanced numerical modelling technique, the finite element method (FEM), to compute site-specific in situ stresses and rock deformation and to predict fracture attributes as a function of material properties, structural position and tectonic stress. Presented are the numerical results of two-dimensional, plane-strain end-member FEM models of a hydrocarbon-bearing fault-propagation-fold structure. Interpretation of the modelling results remains qualitative because of the intrinsic limitations of numerical modelling; however, it still allows comparisons with (the little available) geological and geophysical data.
In all models, the weak mechanical strength and flow properties of a thick shale layer (the main seal) leads to a decoupling of the structural deformation of the shallower sediments from the underlying sediments and basement, and results in flexural slip across the shale layer. All models predict rock fracturing to initiate at the surface and to expand with depth under increasing horizontal tectonic compression. The stress regime for the formation of new fractures changes from compressional to shear with depth. If pre-existing fractures exist, only (sub)horizontal fractures are predicted to open, thus defining the principal orientation of effective reservoir permeability. In models that do not include a blind thrust fault in the basement, flexural amplification of the initial fold structure generates additional fracturing in the crest of the anticline controlled by the material properties of the rocks. The folding-induced fracturing expands laterally along the stratigraphic boundaries under enhanced tectonic loading. Models incorporating a blind thrust fault correctly predict the formation of secondary syn- and anti-thetic mesoscale faults in the basement and sediments of the hanging wall. Some of these faults cut reservoir and/or seal layers, and thus may influence effective reservoir permeability and affect seal integrity. The predicted faults divide the sediments across the anticline in several compartments with different stress levels and different rock failure (and proximity to failure). These numerical model outcomes can assist classic interpretation of seismic and well bore data in search of fractured and overpressured hydrocarbon reservoirs. 相似文献
The role of fluids in faulting mechanism and triggering earthquakes is widely accepted. The effective-stress law is the basis for the postulated theories. Using a generalized version of this law, applicable to both continuum and discontinuities, hydromechanical behaviour of a horizontal fracture in a hypothetical fluid-injection problem is investigated. In this problem the increasing intake flow rates, unpredictable by the traditional fluid-flow solutions, brings out another significant aspect of the role of the fluid pressure in rocks. By reducing the magnitude of the compressive effective stresses the fluid pressure causes elastic recovery in fractures. Simple rheologic models are used to demonstrate this fact. Such effects may lead to permeability increases in the rock mass, depending on the magnitude of the fluid pressure. Such variations in permeability, however, are governed by the path dependency of the fracture-deformation response. Therefore, a significant increase in permeability is an indication of comparability of the state of stress and the applied fluid pressure.This index may reveal the potential of hydroactivation of faults, as may arise in the regions of dam reservoirs, underground waste injections, and known faults, for certain ranges of working pressures relevant to each of the above-cited situations. Fluid-injection tests under constant working pressures are suggested as a means revealing the likelihood of movement on the faults. 相似文献