首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   5篇
  国内免费   3篇
测绘学   3篇
大气科学   3篇
地球物理   42篇
地质学   30篇
海洋学   51篇
综合类   1篇
自然地理   29篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   15篇
  2008年   14篇
  2007年   14篇
  2006年   6篇
  2005年   10篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1993年   2篇
  1990年   3篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
排序方式: 共有159条查询结果,搜索用时 31 毫秒
31.
David  Mook. 《Marine Ecology》1986,7(2):105-113
Abstract. .The absorption efficiencies of the intertidal mangrove dwelling mollusk Melampus coffeus and the rocky intertidal dwelling mollusk Acanthopleura granulata were calculated by a modification of CONOVER'S (1966) equation. M. coffeus tended to consume fresh mangrove leaves indicating that M. coffeus may obtain much of its energy from the actual substrate material rather than from associated bacteria and meiofauna on decaying leaves. Obtaining energy directly from the substrate may be a mechanism for M. coffeus to utilize its food source more efficiently. In contrast, chitons (A. granulata) may utilize the higher energy components of their limited intertidal microflora! food source. Using the high energy component of a food source may be an additional mechanism by which organisms efficiently utilize a food source.  相似文献   
32.
Predicting the distribution of Inherent Optical Properties (IOPs) in the water column requires predicting the physical, chemical, biological, and optical interactions in a common framework that facilitates feedback responses. This work focuses on the development of ecological and optical interaction equations embedded in a 2D hindcast model of the shallow water optical properties on the West Florida Shelf (WFS) during late summer/fall of 1998. This 2D simulation of the WFS includes one case with a Loop Current intrusion above the 40-m isobath and one with the Loop Current intrusion in addition to a periodic terrestrial nutrient supply below the 10-m isobath. The ecological and optical interaction equations are an expansion of a previously developed model for open ocean conditions (Bissett, W.P., Carder, K.L., Walsh, J.J., Dieterle, D.A., 1999a. Carbon cycling in the upper waters of the Sargasso Sea: II. Numerical simulation of apparent and inherent optical properties. Deep-Sea Research, Part I: Oceanographic Research Papers, 46 (2), 271–317; Bissett, W.P., Walsh, J.J., Dieterle, D.A., Carder, K.L., 1999b. Carbon cycling in the upperwaters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes. Deep-Sea Research, Part I: Oceanographic Research Papers, 46 (2), 205–269). The expansion includes an increase in the number of elemental pools to include silica, phosphorus, and iron, an increase in the number of phytoplankton functional groups, and a redevelopment of the Dissolved Organic Matter (DOM) and Colored Dissolved Organic Matter (CDOM) interaction equations. It was determined from this simulation that while the Loop Current alone was able to predict the water column conditions present during the summer, the Loop Current alone was not enough to simulate the magnitude of optical constituents present in the fall of 1998 when compared to satellite imagery. Simulating terrestrial inorganic and organic nutrients and CDOM pulses coinciding with significant meteorological events and high freshwater pulses released from the major rivers feeding the WFS were required to accurately predict the distribution and scale of the inherent optical properties at the surface during the fall months. Modeling the in situ light field for phytoplankton growth and community competition requires addressing the CDOM optical constituent explicitly. The majority of the annually modeled CDOM on WFS was created via in situ production; however, it was also rapidly removed via advection and photochemical destruction. A pulse of terrestrial nutrient and organic color was required to simulate the dramatic changes in surface color seen in satellite imagery on the WFS. The dynamics of the biogeochemical portion of the simulation demonstrate the importance of nonstoichiometric supplies of terrestrial nutrients on the WFS to the prediction of nutrient and CDOM fluxes.  相似文献   
33.
Lofer cyclothems of the Alpine Upper Triassic have many features in common with Holocene sediments of Florida Bay. The modal ‘complete’ Lofer cycle is essentially symmetrical, having a deepening and shoaling phase, as does the cycle-in-progress in Florida Bay. Lateral discontinuity and thickness variations within members of the Lofer cyclothems indicate syn-depositional relief, possibly in the form of mud banks, the signature feature of Florida Bay sedimentation. Spatial and temporal dimensions, although poorly constrained, appear comparable. Analogous depositional textures, biota and sedimentary structures, while not unique to either environment, strengthen the inferences that can be made about the Triassic depositional environment and regarding future evolution of the modern environment. The striking similarities between the Holocene icehouse sediments and the Late Triassic greenhouse deposits suggest that sedimentation patterns at the scale of individual cycles or parasequences may be largely independent of the global climate regime.  相似文献   
34.
Water and coral mucus samples were collected from throughout the Florida Keys National Marine Sanctuary and the Dry Tortugas for three years and were analyzed for human enteric viruses (enteroviruses, noroviruses, hepatitis A virus and adenoviruses) as conservative markers of human sewage using molecular methods. Of the 100 coral and water samples collected, 40 contained genetic material from one or more human enteric viruses. DNA-based adenoviruses were detected widely, in 37.8% of samples and at 91% of stations, including ‘pristine’ reefs in the Dry Tortugas; however, the detection rate was 12% for the RNA-based enteroviruses and noroviruses (hepatitis A virus was never detected). The disparity between the prevalence of RNA- and DNA-based viruses suggests the need for additional work to determine the utility of adenovirus as marker of human sewage.  相似文献   
35.
Temporal and spatial variations in the composition of particulate organic matter (POM) from Florida Bay, USA were examined. The predominance of short-chain homologues for n-alkanes, n-alcohols and n-fatty acids as well as relatively high abundance of C(27) and C(28) sterols suggested that an autochthonous/marine source of OM was dominant bay-wide. Several biomarker proxies such as P(aq) [(C(23)+C(25))/(C(23)+C(25)+C(29)+C(31)) n-alkanes], short/long chain n-alkanes, (C(29)+C(31)) n-alkanes and taraxerol indicated a spatial shift in OM sources, where terrestrial OM rapidly decreased while seagrass and microbial OM markedly increased along a northeastern to southwestern transect. Regarding seasonal variations, POM collected during the dry season was enriched in terrestrial constituents relative to the wet season, likely as a result of reduced primary productivity of planktonic species and seagrasses during the dry season. Principal component analysis (PCA) classified the sample set into sub-groups based on PC1 which seemed to be spatially controlled by OM origin (terrestrial-mangrove vs. marine-planktonic/seagrass). The PC2 seemed to be more seasonally controlled suggesting that hydrological fluctuations and seasonal primary productivity are the drivers controlling the POM composition in Florida Bay.  相似文献   
36.
Recent observations using moored current meters, shipboard ADCP transects, salinity mapping and drifters have been used to study the residual circulation including wind drift in western Florida Bay.Rapid, nearly synoptic surveys of salinity over a large area was an effective tracer-mapping technique, when salinity gradients were sufficiently strong, and provided qualitative information on Lagrangian water motion for the entire study area. The salinity maps indicated a general south-eastward advection, which was only subordinate to tidal mixing in a narrow zone adjacent to the Florida Keys.Drifter data collected simultaneously, allowed quantitative estimates to be added to the transport pattern suggested by salinity maps. The selectively deployed drifters yielded estimates of total drift velocities. In addition, moored current meters and shipboard current profiling were used to determine the distribution of flow across the mouth of the bay facing the Gulf of Mexico and the transport through Long Key Channel, a major connection between the bay and the Atlantic Ocean.Analysis showed that from 64 to over 92% of the drifter trajectory variances could be explained by the combination of a local wind drift, expressed in terms of a wind drift factor multiplied by the surface shear velocity, and an ambient current. For a 1 m high drifter deployed at the surface of the water column, the wind drift factor was found to be approximately 0·125m, making the drift speed roughly equal to 0·45% of wind speed. The mean drifter speeds were linearly proportional to mean transport estimates derived from the current meter observations in Long Key Channel, enhancing confidence in both data sets.The total south-eastward directed residual current varied between 100 and 5000 m day−1and was weaker in summer than in winter, when southward winds associated with periodic passage of cold fronts boost the residual flow. The estimated contribution from local wind drift varied between 500 m day−1in summer to 1000 m day−1in winter. The remaining contribution to the observed Lagrangian residual circulation in western Florida Bay is caused by other forcing, including tidal rectification, remote wind forcing and large-scale current systems (the Gulf Stream and Florida Current systems).  相似文献   
37.
Gamma spectroscopy was used to measure radioisotope (210Pb, 226Ra, 137Cs) activities in sediment cores from 20 lakes and a wetland in Florida, USA. Nine profiles display relatively low (<5 dpm g–1) and constant 226Ra activities, whereas 12 show high (>5 dpm g–1) and variable 226Ra activities. In the latter group, most display up-core increases in activity. Upper sediments from two lakes (Round and Rowell) possess very high (>20 dpm g–1) 226Ra activities that exceed total 210Pb activities, clearly illustrating disequlibrium between 226Ra and supported 210Pb. Supported 210Pb activity is generally thought to come from in situ, 226Ra-containing detrital mineral particles, and is typically assumed to be in secular equilibrium with 226Ra activity. Since 1966, Round Lake has been augmented hydrologically with 226Ra-rich (6.2 dpm L–1) groundwater pumped from the local deep aquifer. Adsorption of dissolved 226Ra to recent Round Lake sediments probably accounts for the high measured 226Ra activities and the pronounced disequilibrium between 226Ra and supported 210Pb in topmost deposits. We suspect that many Florida waterbodies receive some 226Ra-rich runoff and seepage from groundwater pumped for irrigation, residential use, industrial applications, and mining. This may account for up-core increases in 226Ra activity measured in sediment cores from some Florida lakes. Significant groundwater pumping began within the last century, and there has been insufficient time for supported 210Pb to come into equilibrium with adsorbed 226Ra in uppermost deposits. Input of 226Ra-rich groundwater to lakes may occur in any geographic region where local bedrock contains 238U and its daughters. When dissolved 226Ra adsorbs to recent sediments, it complicates accurate estimation of supported 210Pb activity, and confounds calculation of unsupported 210Pb activity that is used in dating models.  相似文献   
38.
An accurately dated peat profile from a mixed cypress swamp in the Fakahatchee Strand Preserve State Park (FSPSP, Florida, USA) has been examined for pollen and spores. The near-annual resolved pollen record shows a gradual shift from a wet to a relatively dry assemblage during the past 100 years. Timing of drainage activities in the region is accurately reflected by the onset and duration of vegetation change in the swamp. The reconstructed vegetation record has been statistically related to pollen assemblages from surface sediment samples. The response range of the FSPSP wetland to environmental perturbations could thus be determined and this allows better understanding of naturally occurring vegetation changes. In addition, the human impact on Florida wetlands becomes increasingly apparent. Superimposed high-frequency variation in the record suggests a positive correlation between winter-precipitation and pollen productivity of the dominant tree taxa. However, further high-resolution analysis is needed to confirm this relation. The response range of the FSPSP wetland to environmental perturbations on both annual- and decadal-scales documented in this study allows recognition and quantification of natural hydrological changes in older deposits from southwest Florida. The strong link between local hydrology and the El Niño Southern Oscillation makes the palynological record from FSPSP highly relevant for studying past El Niño—variability.  相似文献   
39.
We studied sediment cores from four Florida (USA) lakes that have received groundwater hydrologic supplements (augmentation) for >30 years to maintain lake stage. Top samples (0–4 cm) from sediment cores taken in Lakes Charles, Saddleback, Little Hobbs, and Crystal had 226Ra activities of 44.9, 17.5, 7.6, and 8.5 dpm g−1, respectively, about an order of magnitude greater than values in deeper, older deposits. The surface sample from Lake Charles yielded the highest 226Ra activity yet reported from a Florida lake core. Several lines of evidence suggest that groundwater augmentation is responsible for the high 226Ra activities in recent sediments: (1) 226Ra activity in cores increased recently, (2) the Charles, Crystal, and Saddleback cores display 226Ra/210Pb disequilibrium at several shallow depths, suggesting 226Ra entered the lakes in dissolved form, (3) cores show recent increases in Ca, which, like 226Ra, is abundant in augmentation groundwater, and (4) greater Sr concentrations are associated with higher 226Ra activities in recent Charles and Saddleback sediments. Sr concentrations in Eocene limestones of the deep Floridan Aquifer are high relative to Sr concentrations in surficial quartz sands around the lakes. Historical water quality inferences for the lakes were based on diatom assemblages in sediments. Recent alkalization in Lakes Charles, Saddleback, Little Hobbs, and Crystal was inferred from weighted-averaging calibration (WACALIB). The lakes also show recent trophic state increases based on WACALIB-derived estimates for limnetic total P. Although residential and agricultural sources might contribute to increased P loading, P in augmentation waters probably has had significant influence on eutrophication. Dystrophic diatoms were abundant in the early history of Lakes Saddleback, Little Hobbs, and Crystal, which suggests that these lakes contained more tannic waters during the past than at present, perhaps as a consequence of greater inflows from surrounding wetlands. Ionic content of lake waters increased, as indicated by diatom autecological analysis. Recent geochemical and biological changes detected in cores from these lakes probably are a result of deliberate groundwater augmentation, although inputs of groundwater pumped for agricultural and residential development in the watersheds also might have contributed to limnological changes.  相似文献   
40.
We apply geospatial analysis to borehole imagery in an effort to develop new techniques to evaluate the spatial distribution and internal structure of karst conduits. Remote sensing software is used to classify a high resolution, digital borehole image of limestone bedrock from the Biscayne aquifer (South Florida, USA) into a binary image divided into cells of rock matrix and pores. Within a GIS, 2D porosity is calculated for a series of rectangular sampling windows placed over the binary image and then plotted as a function of depth. Potential conduits that intersect the borehole are identified as peaks of high porosity. A second GIS technique identifies a conduit as a continuous object that spans the entire borehole width. According to these criteria, geospatial analysis reveals ∼10 discrete conduits along the ∼15 m borehole image. Continuous sampling of the geologic medium intersected by the borehole provides insight into the internal structure of karst aquifers and the evolution of karst features. Most importantly, this pilot study demonstrates that GIS-based techniques are capable of quantifying the depths, dimensions, shapes, apertures and connectivity of potential conduits, physical attributes that impact flow in karst aquifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号