首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   6篇
  国内免费   2篇
大气科学   7篇
地球物理   6篇
地质学   20篇
海洋学   7篇
天文学   44篇
综合类   4篇
自然地理   14篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2010年   15篇
  2009年   14篇
  2008年   20篇
  2007年   4篇
  2005年   4篇
  2004年   1篇
  2003年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有102条查询结果,搜索用时 656 毫秒
61.
海洋城市是“海洋建设”目标的载体和数字城市建设的先导力量,面对全球经济的不确定性,其经济韧性的增强离不开数字普惠金融的动能注入。文章利用2011—2019年我国53个海洋城市的面板数据,测度海洋城市经济韧性,并构建面板模型深入探究数字普惠金融对海洋城市经济韧性的作用机制及金融监管的调节效应。研究发现:数字普惠金融具有双重性,但对海洋城市经济韧性具有显著增强作用;城市特质分析表明,海洋经济圈、城市规模和行政级别对数字普惠金融与海洋城市经济韧性的关系存在异质性;作用机制表明,数字普惠金融通过创业活跃度和消费能力影响海洋城市经济韧性;进一步分析,金融监管对数字普惠金融增强海洋城市经济韧性具有正向调节效应。这为数字普惠金融提高海洋城市经济韧性,助力数字海洋中心城市建设提供有益参考。  相似文献   
62.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars.  相似文献   
63.
It has been suggested that inclusions of CO2 or CO2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO2 molecules were trapped in water ice deposited from CO2/H2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H2O ice is deposited at 140-165 K, CO2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO2 ice, and therefore this mechanism may allow for CO2 deposition at the poles during warmer periods. The amount of trapped CO2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C4H8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO2 clathrate hydrates. These results have implications for the CO2 content, overall composition, and density of the polar deposits on Mars.  相似文献   
64.
J. Mouginot  W. Kofman 《Icarus》2009,201(2):454-459
The south residual cap of Mars is commonly described as a thin and bright layer of CO2-ice. The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is a low-frequency radar on board Mars Express operating at the wavelength between 55 and 230 m in vacuum. The reflection of the radar wave on a stratified medium like the residual cap can generate interferences, causing weaker surface reflections compared to reflections from a pure water ice surface. In order to understand this anomalous low reflectivity, we propose a stratified medium model, which allows us to estimate both the thickness and the dielectric constant of the optically thin slab. First, we consider the residual cap as single unit and show that the decrease in the reflected echo strength is well explained by a mean thickness of 11 m and a mean dielectric constant of 2.2. This value of dielectric constant is close to the experimental value 2.12 for pure CO2-ice. Second, we study the spatial variability of the radar surface reflectivity. We observe that the reflectivity is not homogeneous over the residual cap. This heterogeneity can be modeled either by variable thickness or variable dielectric constant. The surface reflectivity shows that two different units comprise the residual cap, one central unit with high reflectivity and surrounding, less reflective units.  相似文献   
65.
P.C. Thomas  P.B. James  R. Haberle 《Icarus》2009,203(2):352-798
The residual south polar cap (RSPC) of Mars includes a group of different depositional units of CO2 ice undergoing a variety of erosional processes. Complete summer coverage of the RSPC by ∼6-m/pixel data of the Context Imager (CTX) on Mars Reconnaissance Orbiter (MRO) has allowed mapping and inventory of the units in the RSPC. Unit maps and estimated thicknesses indicate the total volume of the RSPC is currently <380 km3, and represents less than 3% of the total mass of the current Mars atmosphere. Scarp retreat rates in the CO2 ice derived from comparison of High Resolution Imaging Science Experiment (HiRISE) data with earlier images are comparable to those obtained for periods up to 3 Mars years earlier. These rates, combined with sizes of depressions suggest that the oldest materials were deposited more than 125 Mars years ago. Most current erosion is by backwasting of scarps 1-12 m in height. This backwasting is initiated by a series of scarp-parallel fractures. In the older, thicker unit these fractures form about every Mars year; in thinner, younger materials they form less frequently. Some areas of the older, thicker unit are lost by downwasting rather than by the scarp retreat. A surprising finding from the HiRISE data is the scarcity of visible layering of RSPC materials, a result quite distinct from previous interpretations of layers in lower resolution images. Layers ∼0.1 m thick are exposed on the upper surfaces of some areas, but their timescale of deposition is not known. Late summer albedo changes mapped by the CTX images indicate local recycling of ice, although the amounts may be morphologically insignificant. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data show that the primary material of all the different forms of the RSPC is CO2 ice with only small admixtures of water ice and dust.  相似文献   
66.
Eric Chassefière 《Icarus》2009,204(1):137-271
The observations of methane made by the PFS instrument onboard Mars Express exhibit a definite correlation between methane mixing ratio, water vapor mixing ratio, and cloud optical depth. The recent data obtained from ground-based telescopes seem to confirm the correlation between methane and water vapor. In order to explain this correlation, we suggest that the source of gaseous methane is atmospheric, rather than at the solid surface of the planet, and that this source may consist of metastable submicronic particles of methane clathrate hydrate continuously released to the atmosphere from one or several clathrate layers at depth, according to the phenomenon of “anomalous preservation” evidenced in the laboratory. These particles, lifted up to middle atmospheric levels due to their small size, and therefore filling the whole atmosphere, serve as condensation nuclei for water vapor. The observed correlation between methane and water vapor mixing ratios could be the signature of the decomposition of the clathrate crystals by condensation-sublimation processes related to cloud activity. Under the effect of water condensation on crystal walls, metastability could be broken and particles be eroded, resulting in a subsequent irreversible release of methane to the gas phase. Using PFS data, and according to our hypothesis, the lifetime of gaseous methane is estimated to be smaller than an upper limit of 6 ± 3 months, much smaller than the lifetime of 300 yr calculated from atmospheric chemical models. The reason why methane has a short lifetime might be the occurrence of heterogeneous chemical decomposition of methane in the subsurface, where it is known since Viking biology experiments that oxidants efficiently decompose organic matter. If true, it is shown by using existing models of H2O2 penetration in the regolith that methane could prevent H2O2 from penetrating in the subsurface, and further oxidizing the soil, at depths larger than a few millimeters. The present source of methane clathrate, acting over the last few hundred thousand or million years, could have given rise to the thin CO2-ice layer covering the permanent water ice south polar cap. The hypothesis proposed in this paper requires, to be validated, a number of laboratory experiments studying the stability of methane clathrates in martian atmospheric conditions, and the kinetics and amplitude of clathrate particle erosion in presence of condensing water vapor. Detailed future observations of methane, and associated modeling, will allow to more accurately quantify the production rate of methane clathrate, its temporal variability at seasonal scale, and possibly to locate the source(s) of clathrates at the surface.  相似文献   
67.
We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (∼1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during accumulation rather than one of lag production during periods of sublimation.  相似文献   
68.
We used MGS-MOC and MRO-MARCI daily mapping images of the North Polar Region of Mars from 16 August 2005 (Ls = 270°) to 21 May 2009 (Ls = 270°), covering portions of three consecutive martian years (MY 27-MY 29), to observe the seasonal behavior of the polar ice cap and atmospheric phenomena. The rate of cap regression was similar in MY 28 and MY 29, but was advanced by 3.5° of Ls (∼7-8 sols) in MY 29. The spatial and temporal behaviors of dust and condensate clouds were similar in the two years and generally in accord with prior years. Dust storms (>100 km2) were observed in all seasons, with peak activity occurring at Ls = 10-20° from 50°N to 70°N and at Ls = 135-140° from 70°N to 90°N. The most active quadrant was 0-90°W in MY 28, shifting to 180-270°W in MY 29. The majority of regional storms in both years developed in longitudes from 10°W to 60°W. During late summer the larger storms obscure the North Polar Region in a cloud of dust that transitions to north polar hood condensate clouds around autumnal equinox.Changes in the distribution of perennial ice deposits, especially in Olympia Planum, were observed between the 2 years, with the MY 29 ice distribution being the most extensive observed to date. Modeling suggests that the small, bright ice patches on the residual cap are not the result of slope or elevation effects. Rather we suggest that they are the result of local meteorological effects on ice deposition. The annual darkening and brightening of peripheral areas of the residual cap around summer solstice can be explained by the sublimation of a brighter frost layer revealing an underlying darker, ice rich layer that itself either sublimes to reveal brighter material below or acts as a cold trap, attracting condensation of water vapor that brightens the surface. An alternative explanation invokes transport and deposition of dust on the surface from the cap interior, and later removal of that dust. The decrease in cap albedo and accompanying increase in near surface atmospheric stability may be related to the annual minimum of polar storm activity near northern summer solstice.  相似文献   
69.
Previous spectroscopic studies have shown the presence of hydrated minerals in various kinds of sedimentary accumulations covering and encircling the martian North Polar Cap. More specifically, gypsum, a hydrated calcium sulfate, has been detected on Olympia Planum, a restricted part of the Circum-Polar Dune Field. To further constrain the geographical distribution and the process of formation and accumulation of these hydrated minerals, we performed an integrated morphological, structural and compositional analysis of a key area where hydrated minerals were detected and where the main polar landforms are present. By the development of a spectral processing method based on spectral derivation and by the acquisition of laboratory spectra of gypsum-ice mixtures we find that gypsum-bearing sediment is not restricted to the Olympia Planum dunes but is also present in all kinds of superficial sediment covering the surface of the North Polar Cap and the Circum-Polar Dune Field. Spectral signatures consistent with perchlorates are also detected on these deposits. The interpretation of landforms reveals that this gypsum-bearing sediment was released from the ice cap by sublimation. We thus infer that gypsum crystals that are now present in the Circum-Polar Dune Field derive from the interior of the North Polar Cap. Gypsum crystals that were initially trapped in the ice cap have been released by sublimation of the ice and have accumulated in the form of ablation tills at the surface of the ice cap. These gypsum-bearing sublimation tills are reworked by winds and are transported towards the Circum-Polar Dune Field. Comparison with sulfates found in terrestrial glaciers suggests that gypsum crystals in the martian North Polar Cap have formed by weathering of dust particles, either in the atmosphere prior to their deposition during the formation of the ice cap, and/or in the ice cap after their deposition.  相似文献   
70.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号