全文获取类型
收费全文 | 174篇 |
免费 | 17篇 |
国内免费 | 17篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 3篇 |
地球物理 | 80篇 |
地质学 | 42篇 |
海洋学 | 63篇 |
天文学 | 3篇 |
综合类 | 8篇 |
自然地理 | 8篇 |
出版年
2022年 | 3篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 7篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 10篇 |
2013年 | 9篇 |
2012年 | 7篇 |
2011年 | 16篇 |
2010年 | 15篇 |
2009年 | 21篇 |
2008年 | 12篇 |
2007年 | 15篇 |
2006年 | 12篇 |
2005年 | 7篇 |
2004年 | 6篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 5篇 |
2000年 | 10篇 |
1999年 | 9篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1990年 | 3篇 |
1986年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有208条查询结果,搜索用时 15 毫秒
31.
Walker O. Smith Jr Amy R. Shields Jennifer C. Dreyer Vernon Asper 《Deep Sea Research Part I: Oceanographic Research Papers》2011,58(2):147-159
The vertical flux of particulate matter from the surface of the Ross Sea, Antarctica, has been suggested as being large, with substantial seasonal and spatial variations. We conducted a study in which vertical flux was quantified using sediment traps deployed at 200 m and compared to estimates calculated from one-dimensional budgets of nutrients (nitrogen and silicon). Estimates of flux were collected at two locations in the southern Ross Sea from late December to early February during four years: 2001-2002, 2003-2004, 2004-2005, and 2005-2006. Phytoplankton biomass and vertical flux varied substantially seasonally and spatially between the two sites, and among years. The greatest flux was observed in 2001-2002, with a short-term maximum organic carbon flux of 3.13 mmol m−2 d−1, and the summer mean organic carbon flux equal to 0.93 mmol m−2 d−1. In contrast, the mean carbon flux at the same site in 2003-2004 was over an order of magnitude less, averaging 0.19 mmol m−2 d−1, despite the fact that productivity in that year was substantially greater. In 2005-206 the contribution of fecal pellets to flux was smallest among all years, and the pellet contribution ranged from <1 to more than 50% of organic flux. As the moorings also had surface layer fluorometers, the relationship between surface biomass and sediment trap flux was compared. Temporal lags between surface fluorescence and flux at 200 m maxima in 2003-2004 and 2004-2005 ranged from two to six days; however, in 2005-2006 the temporal offset between biomass and flux was much longer, ranging from 11 to 27 days, suggesting that fecal pellet production appeared to increase the coupling between flux and surface production. Estimates of export from the upper 200 m based on one-dimensional nutrient budgets were greater than those recorded by the sediment traps. Nutrient budgets also indicated that siliceous production averaged ca. 40% of the total annual production. The variations observed in the flux of biogenic matter to depth in the Ross Sea are large, appear to reflect different forcing among years, and at present are not adequately understood. However, such variability needs to be both understood and represented in biogeochemical models to accurately assess and predict the effects of climate change on biogeochemical cycles. 相似文献
32.
基于盘锦湿地生态系统野外观测站芦苇群落生长季6~9月的定位观测资料,分析了芦苇湿地土壤微生物季节动态及其与环境因子的关系。结果表明:盘锦芦苇湿地的土壤细菌、放线菌、真菌以及微生物的总数在生长季节呈现出先减少、后增加的变化趋势。湿地的土壤细菌、放线菌以及微生物的总数在8月达到最小,而真菌数量在7月达到最小。湿地土壤中,细菌数量最大,其次是放线菌,最少的是真菌。对细菌、放线菌、真菌以及微生物总数与环境因子的相关分析表明,细菌、放线菌与微生物总数主要受水分影响,而真菌则受水分与气温的协同作用影响 相似文献
33.
34.
Physical disturbance creates bacterial dominance of benthic biological communities in tropical deltaic environments of the Gulf of Papua 总被引:1,自引:0,他引:1
Unlike many reactive continental shelf mud deposits in temperate regions, bacteria and microfauna rather than macrofauna typically dominate benthic biomass and activities over large areas of the Gulf of Papua (GoP) deltaic complex, Papua New Guinea. During mid NW monsoon periods (Jan–Feb), macrofaunal densities at Gulf stations were relatively low (), large macroinfauna were absent (upper 25 cm), and small (), surface deposit-feeding polychaetes and tubiculous amphipods were dominant, reflecting a frequently destabilized seabed and high sedimentation/erosion rates. Although frequent physical disturbance generally inhibits development of macrobenthic communities, some regions of the Gulf deposits are periodically colonized and extensively bioturbated during quiescent periods, as shown by preserved biogenic sedimentary structures. Bacterial inventories integrated over the top 20 cm were extremely variable within each sub region of the clinoform complex. A possible bimodal pattern with bathymetric depth and distance offshore may occur: lowest-inventories within the sandy, proximal Fly River delta, an open Gulf inner topset zone (10–20 m) having sites of relatively high inventories, an open Gulf mid-topset region with intermediate values and less extreme variation, and the outer topset—upper foreset zone (40–50 m) where highest values are attained (). Various measures of microbial activity, including measures proportional to the cellular rRNA content and the proportion of dividing cells, indicate extremely productive populations over the upper 1-m of the seabed throughout the Gulf of Papua region. Bacterial biomass (0–20 cm) including data of Alongi et al. (1991, 1992, 1995) varied from a low of in intertidal mud banks to a high of in the topset—foreset zone. Macrofaunal biomass did not exceed in any sampled region, ranging from 0.009±0 to with no obvious correlation with bathymetric depth (1–63 m). Meiofaunal biomass was generally an order of magnitude lower than macrofaunal biomass. Relatively elevated bacterial biomass and high turnover rates are consistent with high measured rates of benthic remineralization, presumably reflecting the rapid response time of bacteria to physical reworking, the associated entrainment of organic substrate, and flushing of metabolites. Solute exchange is also enhanced below the directly mixed surface region, possibly producing ‘far field’ stimulation of microbes in underlying deposits. Physical reworking and reoxidation of sediments between 10 and 50 m water depth maintain suboxic, nonsulfidic conditions in the upper 0.5–1 m despite active microbial communities and high benthic remineralization rates. 相似文献
35.
Georges Aouad Valérie Geoffroy Jean-Marie Meyer Jean-Louis Crovisier Denis Damidot Peter Stille 《Comptes Rendus Geoscience》2005,337(15):1340-1347
The influence of microorganisms on mineral alteration is not easy to determine in environmental conditions, because of the difficulty to raise for comparison purposes an identical but abiotic system. Another problem in this context is the choice of reliable tracers to evaluate the alteration rate of materials during in vitro experiments. To face such difficulties, we elaborated a defined medium allowing both the growth of Pseudomonas aeruginosa and a precise measurement of the elements solubilized from the minerals. Thanks to this medium, we were able to quantitatively determine the amounts of major elements solubilized from the materials in the presence of bacterial growth, compared to a sterile system. Moreover, the analysis by ICP-MS of trace elements was possible after a chromatographic treatment, which selectively eliminated 99% of the sodium content of the medium. To cite this article: G. Aouad et al., C. R. Geoscience 337 (2005). 相似文献
36.
37.
Wanze Zhu Xiaohu Cai Xingliang Liu Jinxi Wang Song Cheng Xiuyan Zhang Dengyu Li Maihe Li 《山地科学学报》2010,7(4):327-338
Little is known about whether soil microbial population dynamics are correlated with forest succession.To test the hypotheses that(1) soil microbial composition changes over successional stages,and(2) soil microbial diversity is positively correlated with plant species diversity,we determined the soil microbial populations,community composition,and microflora diversity in evergreen broad-leaved forests along a chronosequence of vegetation succession from 5 to 300 years in southwestern China.The soil microbi... 相似文献
38.
《Limnologica》2016
Meteorological extreme events (heavy rainfall, heat waves) may lead to fast changes in nutrient load and water temperature in temperate lakes. We conducted laboratory experiments with an artificial phytoplankton community to mimic a rapid temperature increase (from 21 °C to 29 °C) at low nutrient levels (‘heat wave scenario’), respectively temperature decrease (from 21 °C to 16 °C) and increased nutrient load (‘heavy rainfall scenario’). We hypothesised that there is a taxon specific nutrient x temperature interaction, leading to significant shifts in the phytoplankton community composition when both variables change. To separate the temperature effect from the nutrient effect, we performed another experimental series at a reduced temperature but without addition of nutrients. As expected, the nutrient effect was overall more important than temperature and significantly affected all five taxa tested that represented different algal classes. However, temperature also played an important role for community composition, because the cryptophyte Cryptomonas sp. and the dinoflagellate Peridinium sp. reached significantly higher biovolumes at lower temperatures. The nutrient x temperature interaction was significant in the green alga Scenedesmus obliquus. These findings suggest that our experimental results cannot be interpreted primarily by species competition for nutrients. Heterotrophic bacteria were present in all experiments. Bacterial biomass was significantly positively related to temperature and nutrients. However, relative to phytoplankton biovolume, bacterial biovolume decreased under nutrient replete conditions. In conclusion, our results demonstrate that short-term environmental change may significantly affect both the phytoplankton community (in terms of species dominance and total biomass) and the ratio between autotrophs and heterotrophs in temperate lakes. 相似文献
39.
V. Strakrbov L.R. Izmest'yeva E.A. Maksimova S. Fietz J. Nedoma J. Borovec G.I. Kobanova E.V. Shchetinina E.V. Pislegina 《Global and Planetary Change》2005,46(1-4):57
Three years of regular weekly/biweekly monitoring of seasonal changes in temperature, transparency, chlorophyll a (CHL) and bacteria [erythrosine-stained microscopic counts and cultivable colony forming units (CFUs)] at the vertical profile in the South basin of Lake Baikal (51°54′195″N, 105°04′235″E, depth 800 m) were evaluated. In more detail, the structure and function of phytoplankton and the microbial loop in the euphotic layer at the same site were investigated during the late-winter–early-spring period under the ice. The depth of euphotic zone (up to 1% of surface irradiation) was 35 to 40 m. Primary production was measured three times a week with the 14C method in 2, 10, 20, 30 and 40 m. Maximum production was found in 10 m, with lower values towards the surface (light inhibition) and towards the lower layers. The total production in cells larger than 1 μm in the column (0–40 m) was 204–240 mg C d−1 m−2, 30–40% of it being in cells 1–3 μm (mostly picocyanobacteria), which represented roughly 9% of the total chlorophyll a (estimated from pigment analyses). A major part of phytoplankton biomass was formed by diatoms (Synedra acus Hust., Asterionella formosa Hass. and Stephanodiscus meyerii Genkal & Popovskaya). Total production (including extracellular, dissolved organic matter) was 235–387 mg C day−1 m−2, and the exudates were readily used by bacteria (particles 0.2–1 μm). This part amounted to 1–5% of cellular production in 2 to 20 m and 11–77% of cellular production in 20–40 m, i.e., in light-limited layers. From 0 to 30 m, chlorophyll a concentration was 0.8 to 1.3 μg l−1, wherefrom it decreased rapidly to 0.1 μg l−1 towards the depth of 40 m. Bacteria (DAPI-stained microscopic counts) reached 0.5–1.4×106 ml−1; their cell volumes measured via image analysis were small (average 0.05 μm−3), often not well countable when erythrosine stain was used. Bacterial biomasses were in the range of 6–21 μg C l−1. Numbers of colony forming units (CFUs) on nutrient fish-agar were c. 3–4 orders lower than DAPI counts. The amounts of heterotrophic protists were low, whereby flagellates reached 6 to 87 ml−1 and ciliates, 0.2–1.2 ml−1 (mostly Oligotrichida). Bacterial production was measured in the same depths as primary production using 3H-thymidine (Thy) and 14C-leucine (Leu) uptake. Consistently, bacterial abundances, biomasses, thymidine and leucine production were higher by 30–50% in layers 2, 10 and 20 m compared with that in the deeper 30 and 40 m, where cellular primary production was negligible. Leucine uptake in the deeper layers was even three times lower than in the upper ones. From the comparison of primary and bacterial production, bacteria roughly use 20–40% of primary production during 24 h in the layers 2 to 20 m. 相似文献
40.
Sabino R Veríssimo C Cunha MA Wergikoski B Ferreira FC Rodrigues R Parada H Falcão L Rosado L Pinheiro C Paixão E Brandão J 《Marine pollution bulletin》2011,62(7):1506-1511
Whilst the potential impact on beach users from microorganisms in water has received considerable attention, there has been relatively little investigation into microbial contaminants in sand. Thirty three beaches across Portugal were analyzed during a five year period (2006-2010) to determine the presence of yeasts, pathogenic fungi, dermatophytes, total coliforms, Escherichia coli and intestinal enterococci in sand.Our results showed that 60.4% of the samples were positive for fungi and that 25.2% were positive for the bacterial parameters. The most frequent fungal species found were Candida sp. and Aspergillus sp., whereas intestinal enterococci were the most frequently isolated bacteria. Positive associations were detected among analyzed parameters and country-regions but none among those parameters and sampling period.Regarding threshold values, we propose 15 cfu/g for yeasts, 17 cfu/g for potential pathogenic fungi, 8 cfu/g for dermatophytes. Eighty four cfu/g for coliforms, 250 cfu/g for E. coli, and 100 cfu/g for intestinal enterococci. 相似文献