首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   15篇
  国内免费   26篇
测绘学   1篇
大气科学   2篇
地球物理   2篇
地质学   1篇
海洋学   71篇
综合类   4篇
自然地理   3篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   12篇
  2012年   6篇
  2011年   11篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  1988年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
11.
2008年黄海绿潮路径的数值模拟   总被引:2,自引:0,他引:2  
利用FVCOM模式拉格朗日粒子跟踪模块模拟了2008年5月到7月黄海绿潮漂移路径,根据遥感图像选取粒子跟踪的初始位置和初始时刻,模式中加入M2,S2,K1,01四个主要分潮和Quickscat每日风场资料作为驱动,模拟的粒子运动的主要路径和到达青岛近岸的时间与遥感图像对比都比较吻合。该结论进一步验证了前人关于青岛绿潮来...  相似文献   
12.
基于采用无结构网格和有限体积方法的FVCOM陆架模式,考虑8个主要的天文分潮,建立胶州湾三维高分辨率数值模型来重现和研究其潮汐潮流变化状况。与实测资料对比验证表明,模拟结果与实测值吻合较好。在此基础上,根据模拟结果计算得到了较以往更为精细的同潮图和潮汐、潮流、余流分布特征。研究结果揭示,最大可能潮流和最大余流都发生在团岛附近,流速分别可达2.14和0.43 m/s;除了湾口附近前人报道过的4个余流系统外,还在中部首次揭示了2个相对较弱的余流系统;潮流能通量在内外湾口呈"左进右出"的结构;胶州湾的平均纳潮量为8.31亿m3;染色试验表明,胶州湾30 d的水交换率为36.8%。  相似文献   
13.
基于非结构有限体积法海洋模型FVCOM(Finite-Volume Community Ocean Model), 建立了马六甲海峡及其毗邻海域高分辨率水动力数值模型, 研究了风和潮流作用下的余环流结构以及水体输运特征。结果表明, 马六甲海峡航道中央潮流运动以往复流为主, 边缘存在旋转流; 主要研究区域内落潮流速略大于涨潮流速, 东南窄道处流速最大; 因峡道束窄变浅, 在涨落潮过程中潮流发生汇聚与分离; 主要研究区域东南段存在3个显著的潮致余环流; 东北季风驱动时模型响应为海峡海流整体向西北方向流动, 西南季风时反之; 季风期间潮致表层余环流结构被破坏, 但底层余流仍存在水平环流结构, 且随着风速增加, 底层余环流的数目、大小、形状、位置均会产生变化; 季风过渡期余环流结构也会发生部分改变, 尤其是小潮期间风场影响效果显著。  相似文献   
14.
运用三维海洋模型FVCOM(Finite-Volume Coastal Ocean Model),采用有限体积计算方法,引入了"干、湿"判断,建立了天海达工程附近海域的三维潮流和泥沙输移模型,预测分析了天海达工程建设后对附近海域水动力和地形冲淤的影响。结果表明工程建设后对其西侧潮流影响较大,东侧与南侧影响较小,且随着距离的增加,影响程度减小,在距离工程1200 m以外海域流速相对变化值大约在8%以内;工程建设前后,静风条件下,工程附近海域地形变化趋势基本一致,但由于岸线的改变,工程东西两侧500m范围内近岸海域淤积程度增大,淤积增大幅度范围为0.05~0.1 cm/a。  相似文献   
15.
人们在海湾中进行填海活动除了要考虑经济收益等正面效应外,还应顾及海洋环境的改变对人类可持续发展的影响.文中利用三维动边界水动力模型FVCOM(Finite-Volume Coastal Ocean Model,有限体积近岸海洋模型)对具有曲折岸线和复杂海底地形的狭长海湾-福建省沙埕港进行了现状水动力模拟和4种填海方案下的预测模拟.在此基础上研究了在各种填海方案下,沙埕港的纳潮量、潮流场、潮位以及水交换率的变化情况,讨论了各海洋要素的变化对港口、航道、红树林自然保护区的影响.最后比较了各填海方案下水文要素的变化情况,发现针对不同的海洋要素,填海方案的优先顺序不同.为了减少填海活动所带来的危害,照顾到各方面的利益,提高填海活动的益损比,需要根据海洋功能区划和当地具体情况,综合考虑多种水动力因子变化的影响.  相似文献   
16.
A change in the elevation of bare tidal flats outside a mangrove area is an indispensable factor for the sustainable development of mangroves. Waterline extraction, as an effective and economical tool used in reconstructing the terrain of an intertidal zone, has been widely applied to open-coast tidal flats by constructing a digital elevation model (DEM). However, mangrove wetlands are usually located in wave-sheltered sites, such as estuaries and bays that have narrow tidal channels flanked by tidal flats. Changes in water level are affected by the dry-wet processes of complex landforms caused by tides. This article takes as a study case the area of Yingluo Bay, which covers the core region of the Zhanjiang and Shankou National Mangrove National Nature Reserve in southwestern China. Waterline extraction based on seventeen multisource and multispectral satellite images obtained from December 2014 to April 2015, combining the finite-volume coastal ocean model (FVCOM) hydrodynamic model in an iterative process, was used to generate a topographical map of the bare tidal flat outside the mangrove area in Yingluo Bay. The quality of the iterative DEMs was evaluated via six transects of a ground-based survey using Real - time kinematic (RKT) GPS in May 2015. The mean absolute error (MAE) and root mean square error (RMSE) of the DEM decreased with an increase in the number of iterations. In this study, the DEM in the third iteration was used as the final output because the difference from the previous iterative DEM satisfied an inversion-stopping criterion. The MAE and RMSE of the final DEM with the measured data were 0.072 and 0.09?m, respectively, without considering small tidal creeks. The method used in this study can be an effective and highly precise approach for detecting and reconstructing the historical terrain of a bare tidal flat outside a mangrove area. This work also has great importance regarding intertidal resource management and the sustainable development of mangroves facing the vulnerable coastal ecological environment.  相似文献   
17.
为了解近年的人工填海工程主要包括南海明珠项目、葫芦岛、秀英港扩建工程等人工填海工程对海口湾冲淤变化的影响,基于FVCOM海洋数值模型,对研究区人工填海前后潮流场、波浪场及冲淤变化进行了数值模拟。人工填海后,综合各条件下的冲淤情况,海口湾受潮流和波浪共同作用大部分区域处于淤积状态,年淤积量预测值为0.1~1.0m;白沙角等局部区域处于侵蚀状态,年冲刷量预测值为0.1~0.3m;受海口湾人工填海工程的影响,秀英港航道的水动力条件减弱,对通航条件改善有利,需加强航道的水深监测和定时的清淤工作;在南海明珠人工岛南侧波影区泥沙堆积会形成向海的舌状的突出体,其两侧海岸形成侵蚀后退带,需人工补沙等措施以保证岸线稳定。  相似文献   
18.
基于FVCOM海洋数值模式,采用非结构三角形网格较好地刻画了台湾海峡复杂的岸线边界及海底地形,建立了台湾海峡的三维潮汐潮流数值模型.模拟结果同长期观测资料符合良好,较好地反映出台湾海峡内潮汐、潮流运动的变化状况和分布特征,利用T_tide工具包进行水位潮流调和分析给出了M2、S2、K1、O1四个主要分潮的同潮图、表层潮流椭圆分布.分析表明,M2分潮由台湾岛南北两端传入台湾海峡,两支潮波在澎湖—台湾浅滩南缘相遇,呈NE—SW向倾斜,振幅最大值为2.45m,出现在福建省湄洲湾、兴化湾一带.K1分潮潮波由东北向西南传入,并向南海传播,传播方向上右侧振幅较左侧大0.05m.台湾海峡存在一条分潮潮流椭圆率为0的分隔线,该分隔线大致呈NE—SW走向,分隔线上半部分潮流椭圆旋转方向为逆时针方向,下半部分为顺时针方向.四个主要分潮潮流椭圆长轴基本呈NE—SW走向,但在台湾浅滩表层潮流椭圆长轴方向为NW—SE向,澎湖水道呈N—S向.台湾浅滩处四个分潮的潮流椭圆均较大,对应的潮流也强,可能受当地水深较浅的影响.  相似文献   
19.
The wind-induced sea-level variations at Hakata tidal station in winter are reproduced realistically using a one-way nested model. This nested model is constructed with a structured finite-difference Princeton Ocean Model (POM) for the Tsushima-Korea Straits, and an unstructured Finite Volume Coastal Ocean Model (FVCOM) for Fukuoka Bay divided into triangular-cell grids. The correlation coefficient and root-mean-square error between observed and modeled results are 0.742 and 1.88 [cm], respectively. Moreover, the results show that the nested model with FVCOM is more accurate than the model in which FVCOM is replaced with a high-resolution POM for Fukuoka Bay. This indicates that the nested model constructed with structured and unstructured models works effectively in hindcasting the wind-induced sea-level variations.  相似文献   
20.
渤海主要分潮的模拟及地形演变对潮波影响的数值研究   总被引:2,自引:0,他引:2  
基于FVCOM数值模式,利用1972年和2002年水深岸线数据,分别对渤海主要潮波系统进行模拟,研究了水深岸线变化对渤海主要分潮的影响。结果表明渤海地形演变会引起各分潮无潮点位置移动和振幅的改变,其中M2、S2分潮黄河口附近无潮点位置向东北方向迁移20km以上,且渤海湾湾顶振幅减弱,莱州湾内振幅增强;K1、O1分潮位于渤海海峡附近的无潮点亦向东北方向偏移,移动距离为10km左右,且渤海湾湾顶振幅明显减弱。在此基础上,本文通过敏感性数值实验,对导致黄河口外M2分潮无潮点位置移动的主要因素进行了初步分析。结果显示,在岸线不变的情况下,水深变化导致无潮点向东北方向迁移;而岸线变化导致无潮点向东南方向迁移。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号