首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3566篇
  免费   301篇
  国内免费   150篇
测绘学   125篇
大气科学   210篇
地球物理   1606篇
地质学   1126篇
海洋学   345篇
天文学   29篇
综合类   25篇
自然地理   551篇
  2024年   18篇
  2023年   26篇
  2022年   29篇
  2021年   77篇
  2020年   155篇
  2019年   119篇
  2018年   113篇
  2017年   166篇
  2016年   160篇
  2015年   121篇
  2014年   148篇
  2013年   361篇
  2012年   76篇
  2011年   105篇
  2010年   103篇
  2009年   165篇
  2008年   236篇
  2007年   207篇
  2006年   200篇
  2005年   186篇
  2004年   147篇
  2003年   116篇
  2002年   99篇
  2001年   91篇
  2000年   107篇
  1999年   100篇
  1998年   96篇
  1997年   93篇
  1996年   69篇
  1995年   67篇
  1994年   52篇
  1993年   55篇
  1992年   32篇
  1991年   24篇
  1990年   22篇
  1989年   21篇
  1988年   21篇
  1987年   7篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有4017条查询结果,搜索用时 15 毫秒
101.
This paper presents a new framework for probabilistic modelling of long-term beach evolution in the vicinity of detached breakwaters. The study focuses on the key physical processes contributing to beach variability over a range of spatial and temporal scales. Based on a one-line model, the framework is enhanced with sophisticated solutions for beach-wave-structure interaction, diffraction together with a treatment of varying tide level. The sediment transport rate is calibrated at regional and local levels using data from bespoke field campaigns and site-specific coefficients are proposed. Monte Carlo simulation is conducted for long-term shoreline simulation under a sequence of time varying sequence of waves, currents and tidal levels. The results of the Monte Carlo simulation give an insight into the statistical characteristics of beach behaviour within the defence system. In particular, regions within the scheme that are relatively stable and those that exhibit greater natural fluctuations are identified.  相似文献   
102.
Wave overtopping nearshore coastal structures, such as shore-parallel breakwaters, can significantly alter the current circulation and sediment transport patterns around the structures, which in turn affects the formation of tombolos and salients in the nearshore area. This paper describes the implementation of a wave overtopping module into an existing depth-averaged coastal morphological mode: COAST2D and model applications to investigate the effect of wave overtopping on the hydrodynamics and morphodynamics around a group of shore-parallel breakwaters. The hydrodynamic aspects of the model were validated against a series of laboratory conditions. The model was then applied to a study site at Sea Palling, Norfolk, UK, where 9 shore-parallel segmented breakwaters including 4 surface-piercing and 5 low-crested breakwaters are present, for the storm conditions in Nov 2006. The model results were compared with laboratory data and field measurements, showing a good agreement on both hydrodynamics and morphological changes. Further analysis of wave overtopping effect on the nearshore hydrodynamics and morphodynamics reveals that wave overtopping has significant impacts on the nearshore circulation, sediment transport and the resulting morphological changes within such a complex breakwater scheme under the storm and macro-tide conditions. The results indicate the importance of including the wave overtopping in modelling nearshore morphodynamics with the presence of coastal structures.  相似文献   
103.
In this paper, we present and evaluate three long-term wave models for application in simulation-based design of ships and marine structures. Designers and researchers often rely on historical weather data as a source for ocean area characteristics based on hindcast datasets or in-situ measurements. The limited access and size of historical datasets reduces repeatability of simulations and analyses, making it difficult to assess the sampling variability of performance and loads on marine vessels and structures. Markov, VAR and VARMA wave models, producing independent long-term time series of significant wave height (Hs) and spectral peak period (Tp), is presented as possible solutions to this problem. The models are tested and compared by addressing how the models affect interpretation of design concepts and the ability to replicate statistical and physical characteristics of the wave process. Our results show that the VAR and VARMA models perform sufficiently in describing design performance, but does not capture the physical process fully. The Markov model is found to perform worst of the tested models in the applied tests, especially for measures covering several consecutive sea states.  相似文献   
104.
A new class of phytoplankton models with a mechanistic basis has been presented in a companion paper (Baklouti, M., Diaz, F., Pinazo, C., Faure, V., Queguiner, B., 2006. Investigation of mechanistic formulations depicting phytoplankton dynamics for models of marine pelagic ecosystems. Progress in Oceanography). It is the default class of models implemented in our new numerical tool Eco3M, which is dedicated to Ecological, Mechanistic and Modular Modelling. A brief overview of its main features is given in Section 2 of the present paper. In the next sections, a particular phytoplankton model among the aforementioned class has been tested with special emphasis on the mechanistic photosynthesis component relating the photosynthetic rate to the proportion of open photosystems II. The present study encompasses several essential steps that are inherent to any modelling, including model reduction, model sensitivity analysis and comparison of model outputs with experiments. The global sensitivity analysis of the plankton model for one-at-a-time parameter perturbations revealed a restricted set of parameters having major influence on the model outputs. Sensitivity tests involving simultaneous parameter perturbations within the range actually encountered in the literature provided a confidence interval for the outputs. Chemostat experiments performed on nitrate-limited diatoms grown under low (LL) and high-light (HL) conditions have been used for comparison with model outputs. The good fit between measured data and model outputs using the same parameter values in both the LL and HL cases demonstrates the ability of our model to represent the main features of phytoplankton dynamics including photoacclimation. Finally, Eco3M is ultimately intended to include explicit bacterial and zooplankton compartments, as well as to be coupled with ocean circulation models, but the intrinsic behavior of the phytoplankton model has been investigated first, independently of physical forcing.  相似文献   
105.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   
106.
Plasma and magnetic field measurements made onboard the Venus Express on June 1, 2006, are analyzed and compared with predictions of a global model. It is shown that in the orbit studied, the plasma and magnetic field observations obtained near the North Pole under solar minimum conditions were qualitatively and, in many cases also, quantitatively in agreement with the general picture obtained using a global numerical quasi-neutral hybrid model of the solar wind interaction (HYB-Venus). In instances where the orbit of Venus Express crossed a boundary referred to as the magnetic pileup boundary (MPB), field line tracing supports the suggestion that the MPB separates the region that is magnetically connected to the fluctuating magnetosheath field from a region that is magnetically connected to the induced magnetotail lobes.  相似文献   
107.
A two-dimensional elastic Chebyshev spectral element method (SPEM) is used to model the seismic wavefield within a massive structure and in its vicinity. We consider 2-D models where a linear elastic structure, with quadrangular cross-section, resting on an elastic homogeneous half-space, is impinged upon by the waves generated by a surface impulse at some distance. The scattering of Rayleigh waves and the response of the structure are extensively analysed in a parametric way, varying size, mechanical parameters and shape of the load. Some of the models considered are representative of embankments and earth dams. The simulation shows that some models resonate, storing part of the incoming energy. With realistic parameters, the lowest resonance frequency is due to pure shear deformation and is controlled by the shear velocity and height of the load. Flexural modes are excited only at higher frequencies. The acceleration at the top of the structure may be five/seven times higher than at the base, depending on the mass of the structure. The gradual release of trapped energy produces a ground roll lasting several seconds after the wave front has passed. The ground-roll amplitude depends on the sturcture's mass and can be as large as 30% of the peak acceleration. Outside resonance conditions, the ground motion is almost unaffected by the presence of the artefact; the horizontal motion on top of it is nearly twice the motion at ground level. Similar results should be expected when the incident field is an upcoming shear wave. A qualitative discussion shows that the presence of anelastic attenuation in the embankment does not significantly alter the preceding conclusions, unless it is of very low values (e.g. Q < 15).The modelling results that we discuss indicate that the soil-structure interaction may substantially alter the ‘free-field’ ground motion. From a practical point of view, the main conclusions are: (1) careful analysis is necessary when interpreting seismic records collected in the vicinity of large artefacts; (2) seismic hazard at a site may depend on the presence of man-made structures such as embankments, dams, tall and massive buildings.  相似文献   
108.
Subduction and exhumation dynamics can be investigated through analysis of metamorphic and deformational evolution of associated high‐grade rocks. The Erzgebirge anticline, which forms at the boundary between the Saxothuringian and Teplá‐Barrandian domains of the Bohemian Massif, provides a useful study area for these processes owing to the occurrence of numerous meta‐basites preserving eclogite facies assemblages, and coesite and diamond bearing quartzofeldspathic lithologies indicating subduction to deep mantle depths. The prograde and retrograde evolution of meta‐basite from the Czech portion of the Erzgebirge anticline has been constrained through a combination of thermodynamic modelling and conventional thermobarometry. Garnet growth zoning indicates that the rocks underwent burial and heating to peak conditions of 2.6 GPa and at least 615 °C. Initial exhumation occurred with concurrent cooling and decompression resulting in the growth of amphibole and zoisite poikiloblasts overgrowing and including the eclogite facies assemblage. The development of clinopyroxene–plagioclase–amphibole symplectites after omphacite and Al‐rich rims on matrix amphibole indicate later heating at the base of the lower crust. Omphacite microstructures, in particular grain size analysis and lattice‐preferred orientations, indicate that the prograde evolution was characterized by a constrictional strain geometry transitioning into plane strain and oblate fabrics during exhumation. The initial constrictional strain pattern is interpreted as being controlled by competing slab pull and crustal buoyancy forces leading to necking of the subducting slab. The transition to plane strain and flattening geometries represents transfer of material from the subducting lithosphere into a subduction channel, break‐off of the dense slab and rebound of the buoyant crustal material.  相似文献   
109.
The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
110.
Observations of upper mantle reflectivity at numerous locations around the world have been linked to the presence of a heterogeneous distribution of rock types within a broad layer of the upper mantle. This phenomenon is observed in wide-angle reflection data from Lithoprobe's Alberta Basement Transect [the SAREX and Deep Probe experiments of 1995] and Trans-Hudson Orogen Transect [the THoRE experiment of 1993]. SAREX and Deep Probe image the Archaean lithosphere of the Hearne and Wyoming Provinces, whereas THoRE images the Archaean and Proterozoic lithosphere of the Trans-Hudson Orogen and neighbouring areas.Finite-difference synthetic seismograms are used to constrain the position and physical properties of the reflective layer. SAREX/Deep Probe modelling uses a 2-D visco-elastic finite-difference routine; THoRE modelling uses a pseudospectral algorithm. In both cases, the upper mantle is parameterized in terms of two media. One medium is the background matrix; the other is statistically distributed within the first as a series of elliptical bodies. Such a scheme is suitable for modelling: (1) variations in lithology (e.g., a peridotite matrix with eclogite lenses) or (2) variations in rheology (e.g., lenses of increased strain within a less strained background).The synthetic seismograms show that the properties of heterogeneities in the upper mantle do not change significantly between the two Lithoprobe transects. Beneath the Trans-Hudson Orogen in Saskatchewan, the layer is best modelled to lie at depths between 80 and 150 km. Based on observations from perpendicular profiles, anisotropy of the heterogeneities is inferred. Beneath the Precambrian domains of Alberta, 400 km to the west, upper mantle heterogeneities are modelled to occur between depths of 90 and 140 km. In both cases the heterogeneous bodies within the model have cross-sectional lengths of tens of kilometers, vertical thicknesses less than 1 km, and velocity contrasts from the background of − 0.3 to − 0.4 km/s. Based on consistency with complementary data and other results, the heterogeneous layer is inferred to be part of the continental lithosphere and may have formed through lateral flow or deformation within the upper mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号