首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3132篇
  免费   668篇
  国内免费   1647篇
测绘学   26篇
大气科学   1050篇
地球物理   497篇
地质学   1793篇
海洋学   1455篇
天文学   28篇
综合类   204篇
自然地理   394篇
  2024年   15篇
  2023年   53篇
  2022年   92篇
  2021年   133篇
  2020年   133篇
  2019年   173篇
  2018年   148篇
  2017年   165篇
  2016年   164篇
  2015年   179篇
  2014年   246篇
  2013年   275篇
  2012年   224篇
  2011年   255篇
  2010年   203篇
  2009年   270篇
  2008年   253篇
  2007年   280篇
  2006年   282篇
  2005年   216篇
  2004年   219篇
  2003年   178篇
  2002年   186篇
  2001年   139篇
  2000年   131篇
  1999年   157篇
  1998年   106篇
  1997年   116篇
  1996年   87篇
  1995年   77篇
  1994年   65篇
  1993年   53篇
  1992年   48篇
  1991年   35篇
  1990年   18篇
  1989年   35篇
  1988年   11篇
  1987年   10篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1954年   2篇
排序方式: 共有5447条查询结果,搜索用时 324 毫秒
171.
According to calculation results of ocean chlorophyll concentration based on SeaWiFS data by SeaBAM model and synchronous ship-measured data, this research set up an improved model for CaseⅠand CaseⅡwater bodies respectively. The monthly chlorophyll distribution in the East China Sea in 1998 was obtained from this improved model on calculation results of SeaBAM. The euphotic depth distribution in 1998 in the East China Sea is calculated by using remote sensing data of K490 from SeaWiFS according to the relation between the euphotic depth and the oceanic diffuse attenuation coefficient. With data of ocean chlorophyll concentration, euphotic depth, ocean surface photosynthetic available radiation (PAR), daily photoperiod and optimal rate of daily carbon fixation within a water column, the monthly and annual primary productivity spatio-temporal distributions in the East China Sea in 1998 were obtained based on VGPM model. Based on analysis of those distributions, the conclusion can be drawn that there is a clear bimodality character of primary productivity in the monthly distribution in the East China Sea. In detail, the monthly distribution of primary productivity stays the lowest level in winter and rises rapidly to the peak in spring. It gets down a little in summer, and gets up a little in autumn. The daily average of primary productivity in the whole East China Sea is 560.03 mg/m2/d, which is far higher than the average of subtropical ocean areas. The annual average of primary productivity is 236.95 g/m2/a. The research on the seasonal variety mechanism of primary productivity shows that several factors that affect the spatio-temporal distribution may include the chlorophyll concentration distribution, temperature condition, the Yangtze River diluted water variety, the euphotic depth, ocean current variety, etc. But the main influencing factors may be different in each local sea area.  相似文献   
172.
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.  相似文献   
173.
1. IntroductionAs well known, Kuroshio is a famous and strongwest boundary current in the North Pacific. It trans-fers enormous energy from the low latitudes to themid-high latitudes and releases huge heat flux to theatmosphere above (Hsiung, 1985). The variation ofKuroshio exerts great influence on weather and cli-mate in East Asian.During 1950-60s, Lü (1950, 1964) found that thewestern North Pacific SSTA had a close relation withsummer rainfall in China. In the 1970s, evidencesshowed…  相似文献   
174.
Red tide,also called harmful algal bloom interna-tionally,is a disaster abnormal phenomenon of oceanecology with an explosive breed or dense assemble ofone or several phytoplanktons in a specific ocean en-vironment condition,colors the seawater,influencesand harms ocean living things.The formation of redtide is controlled mainly by a complex interplay ofbiological,physical and chemical processes,but themost main cause influencing the occurrence of red tideis the seawater eutrophication,i.e.,the…  相似文献   
175.
176.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
177.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
178.
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号