首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   112篇
  国内免费   105篇
测绘学   98篇
大气科学   35篇
地球物理   274篇
地质学   446篇
海洋学   21篇
天文学   92篇
综合类   28篇
自然地理   8篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   10篇
  2020年   20篇
  2019年   22篇
  2018年   15篇
  2017年   26篇
  2016年   27篇
  2015年   24篇
  2014年   43篇
  2013年   49篇
  2012年   25篇
  2011年   34篇
  2010年   26篇
  2009年   51篇
  2008年   50篇
  2007年   50篇
  2006年   59篇
  2005年   59篇
  2004年   43篇
  2003年   56篇
  2002年   40篇
  2001年   31篇
  2000年   21篇
  1999年   31篇
  1998年   30篇
  1997年   28篇
  1996年   23篇
  1995年   19篇
  1994年   14篇
  1993年   13篇
  1992年   8篇
  1991年   8篇
  1990年   3篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1002条查询结果,搜索用时 31 毫秒
31.
煤层倾角与覆岩变形破裂分带   总被引:7,自引:0,他引:7  
地下采煤中三带(冒落带、裂隙带、弯曲带)高度的判断是预测采空引起地表变形破坏程度的依据。在诸多的影响因素中, 煤层倾角是控制三带高度的最主要因素。建立在实测统计基础上的经验范围值用于三带高度的判断带有一定的人为性。急倾斜煤层中冒落带和裂隙带高度随煤层倾角变化的规律已被褐示[7].通过弹塑性岩石材料的非线性有限元模拟, 本文提出了利用应力重分布图判断中、缓倾角煤层采空区覆岩三带高度的方法, 并应用于实际工程。  相似文献   
32.
岩体结构力学岩体工程地质力学的新发展   总被引:6,自引:1,他引:6  
本文从岩体工程地质力学角度, 研讨了岩体结构力学的意义, 地位与作用。作者就个人的认识, 将岩体结构力学的理论特点, 概括为五个方面, 即再变形和再破坏, 岩体结构的控制作用、岩体结构控制论、赋存环境以及关于岩体的多种力学介质和力学模型构成的力学体系。  相似文献   
33.
岩质高边坡岩体变形参数及松弛带厚度研究   总被引:10,自引:0,他引:10  
预测岩质高边坡开挖后岩体变形模量的变化及松弛带厚度,是分析岩质高边坡在开挖后变形(位移)和作好防护设计的重要资料,运用波动力学关于平均应力与体积模量、岩体纵波速度与弹性模量、变形模量间的关系,通过部分实测资料及边坡应力场有限元分析的资料,分别建立了纵波速度与岩体变形模、岩体应力间的关系,研究了开挖边坡岩体变形模量的变化,预测了岩体松弛带的厚度。  相似文献   
34.
On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001). By simulating, we obtained the motion features of the firstorder blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with spacetime of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.  相似文献   
35.
Liu Jie 《中国地震研究》2004,18(4):406-416
Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and surface structures are analyzed and the difference between sedimentary cover and basement in their deformation characteristics and the genesis are discussed. The following conclusions have been drawn : ( 1 ) the epicentral distribution indicates that, the east Qiulitag and south and north Qiulitag deep faults in the basement correspond to the east and west Qiulitag anticlines, respectively. Moreover, deep faults also exist beneath the Yiqiklik and Yaken anticlines. It indicates that the formation of surface structures is controlled by deep structures; (2) A NE-trending strike-slip fault develops along the line from the western termination of Yiqiklik structure to Dongqiu Well 5 and a NW-trending active fault on the western side of Baicbeng. The two active faults across the tectonic strike are the main causes for tectonic segmentation of the Kuqa depression and possibly the cause for the middle segment (Kuqa-Baicheng) of the depression to be more shortened than both its eastern and western terminations; (3) The difference between the sedimentary cover and basement in their deformation characteristics depends mainly on the different properties of media between them.The lithospheric strength of the basement in the basin is fairly high, which determines the basement deformation to be mainly of brittle fracture seismic activity. While the strength of sedimentary cover is low, where there exist weak thin layers, such as coal and gyps. Under the effect of strong tectonic compression, the sedimentary rocks may undergo strong viscous or plastic flow deformation; meanwhile, an aseismic detachment may take place along the weak layers.  相似文献   
36.
Significant faulting and deformation of the ground surface has been rarely known during volcanic eruptions. Usu Volcano, Hokkaido, Japan, is a unique example of deformation due to felsic magma intrusion. Usu Volcano has a history of such types of eruptions as phreatic, pumice eruption (Plinian type), pyroclastic flowing and lava doming since 1663. On March 31, 2000, phreatomagmatic to phreatic eruptions took place after 23 years of dormancy in the western piedmont, followed by explosions on the western flank of Usu Volcano. They were associated with significant deformation including faulting and uplift. The eruptions and deformation were continuing up to the end of May 2000.We identified the faulting using total nine sets of aerial photographs taken from before the eruption (March 31, 2000) to more than 1 year (April 27, 2001) after the end of the activity, and traced deformation processes through image processing using aerial photographs. We found that some of the new faults and the associated phreatic eruptions were related to old faults formed during the 1977–1981 eruptive episode.The image processing has revealed that the surface deformation is coincident with the area of faulting forming small grabens and the phreatic explosion vents. However, the faulting and main explosive eruptions did not take place in the highest uplift area, but along the margin. This suggests that the faulting and explosive activities were affected by small feeder channels diverging from the main magma body which caused the highest uplift.  相似文献   
37.
2003年2月14日石河子M5.4地震地形变异常及其演化分析   总被引:1,自引:0,他引:1  
杨又陵  张翼 《内陆地震》2005,19(3):241-248
分析了新疆石河子M5.4地震前震中250 km范围内定点形变的观测资料,认为从2002年5月到震前,单测项异常随时间起伏,多台异常在时间上连续发展并呈增加趋势,震前20天位于震中附近的台站出现临震突变;异常在空间呈现由西向东、由南向北,逐渐向震中区发展的态势.与1996年沙湾M5.2地震前的形变异常进行比较,认为存在较大的差异.  相似文献   
38.
Analysis of earth dams affected by the 2001 Bhuj Earthquake   总被引:3,自引:0,他引:3  
An earthquake of magnitude of 7.6 (Mw 7.6) occurred in Bhuj, India on January 26, 2001. This event inflicted damages of varying extents to a large number of small to moderate size multi-zone earth dams in the vicinity of the epicenter. Some of the distress was due to the liquefaction of saturated alluvium in foundation. Liquefaction was relatively localized for the majority of these dams because the earthquake struck in the middle of a prolonged dry season when the reservoirs behind these dams were nearly empty and shallow alluvium soils underneath the downstream portions of the dams were partly dry. Otherwise, liquefaction of foundation soils would have been more extensive and damage to these dams more significant. Six such dams have been examined in this paper. Four of these facilities, Chang, Shivlakha, Suvi, and Tapar were within the 50 km of epicenter region. These dams underwent free-field ground motion with peak ground accelerations between 0.28g to 0.52g. Of these Chang Dam underwent severe slumping, whereas Shivlakha, Suvi, and Tapar Dams were affected severely especially over the upstream sections. Fatehgadh Dam and Kaswati Dam were affected relatively less severely. Foundation conditions underneath these dams were first examined for assessing liquefaction potential. A limited amount of subsurface information available from investigations undertaken prior to the earthquake indicates that, although the foundation soils within the top 2.0 to 2.5 m underneath these dams were susceptible to liquefaction, Bhuj Earthquake did not trigger liquefaction because of lack of saturation of these layers underneath the downstream portions of these dams. These dams were then analyzed using a simple sliding block procedure using appropriate estimates of undrained soil strength parameters. The results of this analysis for these structures were found to be in general agreement with the observed deformation patterns.  相似文献   
39.
Slope stability evaluation using Back Propagation Neural Networks   总被引:4,自引:0,他引:4  
The Yudonghe landslide, located in western Hubei Province of China, consists of eastern and western subunits as well as a main landslide mass with upper and lower slip surfaces. As an important landslide close to Shuibuya Dam on the Qing River, its stability is crucial, as the slide might reactivate because of a change in ground-water level caused by filling of the Shuibuya Reservoir. Existing weakness zones, growth of ruptures, the downslope attitude of geologic strata, and water infiltration, which reduced the strength of rocks and soils, have been found to be the most important factors contributing to the Yudonghe landslide. With regard to the landslide processes, it can be noted that the original large-scale slide activity was due to erosion by the Qing River, the second sliding resulted from the fall of blocks from the head scarp, and the final activity was the growth of the eastern and western secondary slides. A base failure was the main type of slope movement, however, it was obvious that more than one sliding event occurred, as inferred from striations and fractures detected by microstructure analysis of soils along the failure surfaces. Slope instability was evaluated by the method of Back Propagation Neural Networks (BPNN), in which a four-layer BPNN model with five input nodes, two hidden layers, and two output nodes was constructed using a training data set of landslide samples throughout the Qing River area. The predicted results of this analysis showed that the factor of safety was 1.10, which indicates that the Yudonghe landslide is currently in a marginally stable condition.  相似文献   
40.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号