首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   12篇
  国内免费   24篇
地球物理   3篇
地质学   15篇
海洋学   285篇
综合类   2篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   9篇
  2020年   13篇
  2019年   7篇
  2018年   6篇
  2017年   13篇
  2016年   9篇
  2015年   9篇
  2014年   17篇
  2013年   8篇
  2012年   11篇
  2011年   20篇
  2010年   13篇
  2009年   10篇
  2008年   15篇
  2007年   18篇
  2006年   18篇
  2005年   12篇
  2004年   11篇
  2003年   12篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   9篇
  1991年   4篇
排序方式: 共有305条查询结果,搜索用时 0 毫秒
61.
浮式防波堤具有对海洋环境友好、施工方便、造价受水深影响小等优点,在海岸工程领域有广阔的应用前景。但受消波效果不稳定、结构易破坏且对锚泊系统要求高等因素的影响,浮式防波堤在实际工程应用中面临较大的挑战。本文采用物理模型试验以及基于OpenFoam的数值模拟方法,对一种由双浮筒、双竖板与水平连接板组成的新型浮式防波堤结构进行消浪性能研究。讨论波浪要素、相对竖板高度、相对水平连接板宽度等因素对双筒双板式浮式防波堤(DCDPFB)消浪性能的影响,分析其周围形成的局部涡量与速度场变化,确定相对最优的结构尺寸。结果表明,相对水平连接板宽度、相对竖板高度和半圆柱体尺寸是影响DCDPFB消浪性能的关键因素;波高与入水深度对透射系数的影响较小;DCDPFB周围形成的局部涡量与速度场变化是耗散波浪能量的重要因素;按照相对最优结构尺寸建造的DCDPFB试验段,在海上原型试验中表现出良好的消波性能。  相似文献   
62.
Surface or submerged horizontal or vertical plate can be considered as a new concept breakwater.This paper investigates the wave-plate interaction of this type of breakwater by use of the boundary element method.The relationships of wave transmitted and reflected among plate thickness,submergence and length are carefully studied by numerical simulation.It is shown that:(1) The transmitted coefficients of submerged horizontal plate or vertical plate will become larger with the increase of plate thickness and reduce rapidly with the decrease of plate submergence.(2) Both surface horizontal and vertical plate are efficient for intermediate and short wave elimination,but vertical plate is more effective.(3) Submerged horizontal plate can act more effectively than submerged vertical plate does.With all wave frequencies,the vertical plate almost has no wave elimination effect.  相似文献   
63.
Wave attenuation by moored cylinders is considered. The cylinders are submerged with their axes horizontal. Linear potential theory is applied. Three-dimensional motions of the cylinders subjected to normal and oblique monochromatic waves are determined using potential theory and a boundary integral method. Each cylinder has length 9.1 m (30 ft) and radius 1.5 m (5 ft), with its top 1.5 m (5 ft) below the still water line and its bottom 3.0 m (10 ft) above the seabed. Free-surface elevations are obtained for a single cylinder and for two cylinders in series. These configurations are effective wave barriers for a range of wave frequencies and incident angles.  相似文献   
64.
以淹没状态下的半圆型防波堤为研究对象,采用不规则波断面模型试验,结合典型实例分析了堤体波压分布的特点,指出波浪经过堤顶破碎与否直接影响到堤体所受波力的大小,并建议了开孔办法和波力计算方法.  相似文献   
65.
以沿海某船厂防波堤破坏为背景,通过总结深水防波堤的设计方法,对比新、老防波堤规范关于深水防波堤不同的要求,在分析该船厂防波堤破坏原因的基础上,提出修复设计方案,并通过物理模型试验验证,对该方案进行优化。  相似文献   
66.
Most previous investigations related to composite breakwaters have focused on the wave forces acting on the structure itself from a hydrodynamic aspect. The foundational aspects of a composite breakwater under wave-induced cyclic loading are also important in studying the stability of a composite breakwater. In this study, numerical simulations were performed to investigate the wave-induced pore water pressure and flow changes inside the rubble mound of the composite breakwater and seabed foundation. The validity and applicability of the numerical model were demonstrated by comparing numerical results with existing experimental data. Moreover, the present model clearly has shown that the instantaneous directions of pore water flow motion inside the seabed induced by surface waves are in good agreement with the general wave-induced pore water flow inside the seabed. The model is further used to discuss the stability of a composite breakwater, i.e., the interaction among nonlinear waves, composite breakwater and seabed. Numerical results suggest that the stability of a composite breakwater is affected by not only downward shear flow generating on the seaward slope face of the rubble mound but, also, a high and dense pore water pressure gradient inside the rubble mound and seabed foundation.  相似文献   
67.
Breaking wave loads on coastal structures depend primarily on the type of wave breaking at the instant of impact. When a wave breaks on a vertical wall with an almost vertical front face called the “perfect breaking”, the greatest impact forces are produced. The correct prediction of impact forces from perfect breaking of waves on seawalls and breakwaters is closely dependent on the accurate determination of their configurations at breaking. The present study is concerned with the determination of the geometrical properties of perfect breaking waves on composite-type breakwaters by employing artificial neural networks. Using a set of laboratory data, the breaker crest height, hb, breaker height, Hb, and water depth in front of the wall, dw, from perfect breaking of waves on composite breakwaters are predicted using the artificial neural network technique and the results are compared with those obtained from linear and multi-linear regression models. The comparisons of the predicted results from the present models with measured data show that the hb, Hb and dw values, which represent the geometry of waves breaking directly on composite breakwaters, can be predicted more accurately by artificial neural networks compared to linear and multi-linear regressions.  相似文献   
68.
Deformation of rubble-mound breakwaters under cyclic loads   总被引:1,自引:0,他引:1  
Rubble-mound breakwaters usually consist of a core of small quarry-run rock protected by one or more intermediate layers or underlayers that separate the core from the cover layers, which are composed of large armor units. Failure of rubble-mound breakwaters may be due to effects such as removal or damage of the armor units, overtopping leading to scouring, toe erosion, loss of the core material, or foundation problems under waves. However, whether rubble mounds fail under seismic loads is unknown. High seismic activity can lead to large settlements and even to failure of the breakwaters. The design of coastal structures should take into account the most relevant factors in each case, including seismic loading. The objective of this study is to understanding the failure mechanisms of conventional breakwater structures under seismic loads on rigid foundations. Hence, an experimental study was carried out on conventional breakwater structures with and without toes, subjected to different dynamic loadings of variable frequencies and amplitudes, in a shaking tank. A shaking tank with a single degree of freedom was developed to study the simple responses of conventional rubble-mound breakwaters under cyclic loads. For each test, an automatic raining crane system was used to achieve the same relative density and porosity of the core material. The input motion induced horizontal accelerations of different magnitudes during the tests. The accelerations and the deformation phases of the model were measured by a data acquisition system and an image processing system. The experiments on the conventional rubble-mound type breakwater model were performed under rigid-bottom conditions. The model's scale was 1:50. Cyclic responses of breakwaters with toes and without toes were examined separately, and their behaviors were compared. The results were compared with a numerical study, and the material properties and failure modes were thus defined.  相似文献   
69.
本文基于1987和1988年夏季在古镇口港同步连续观测的波浪、波压力和浮托力资料,分析研究了浮托力的概率特征、浮托力沿堤底面的变化及其谱特征。结果表明,浮托力幅度和周期的累积分布实际上不随测点在堤底面上的位置变化,可用公式表示。浮托力沿堤底面宽度近似呈线性衰减,前趾浮托力最大,后趾不为零,呈梯形状。文中还给出了计算最大峰、谷总浮托力的方法。  相似文献   
70.
In this study, waves with the heights higher than H1/3 in an irregular wave train are called as extreme waves and defined with the help of extreme wave parameter, αextreme. In order to see the effect of extreme waves on the design weight of armour stone, stability analysis is carried out based on the hydraulic model test results. The test results of high αextreme cases (HE) and low αextreme cases (LE) are compared with currently used van der Meer's formulae with permeability factor P=0.4 and 0.45 and Hudson formula by using H1/3 and H1/10 in terms of the design weight of armour stone. As a result of the comparison, it is found that Hudson formula by using H1/3 underestimates the necessary armour weight. Usage of H1/10 instead of H1/3 in Hudson formula doubles the weight which seems overestimated when Irribaren number is away from the transition zone in which both wave run-up and run-down forces become effective. However, it seems underestimated near the transition zone where experiment case HE gives higher armour weights. When the design weight of armour stone is calculated by van der Meer's formulae with P=0.4, it may be necessary to increase the weight up to 30% in the case of high extreme waves. On the other hand, van der Meer's formulae may overestimate the weight 14% when the extreme waves are low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号