首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38173篇
  免费   5974篇
  国内免费   8314篇
测绘学   3528篇
大气科学   4921篇
地球物理   6484篇
地质学   20241篇
海洋学   5631篇
天文学   3377篇
综合类   2410篇
自然地理   5869篇
  2024年   265篇
  2023年   698篇
  2022年   1426篇
  2021年   1615篇
  2020年   1468篇
  2019年   1808篇
  2018年   1307篇
  2017年   1533篇
  2016年   1548篇
  2015年   1738篇
  2014年   2168篇
  2013年   2177篇
  2012年   2212篇
  2011年   2346篇
  2010年   2033篇
  2009年   2596篇
  2008年   2529篇
  2007年   2597篇
  2006年   2495篇
  2005年   2371篇
  2004年   2041篇
  2003年   1950篇
  2002年   1704篇
  2001年   1492篇
  2000年   1495篇
  1999年   1294篇
  1998年   1124篇
  1997年   800篇
  1996年   656篇
  1995年   583篇
  1994年   539篇
  1993年   459篇
  1992年   320篇
  1991年   292篇
  1990年   197篇
  1989年   161篇
  1988年   131篇
  1987年   76篇
  1986年   44篇
  1985年   36篇
  1984年   23篇
  1983年   20篇
  1982年   12篇
  1981年   9篇
  1980年   8篇
  1979年   7篇
  1978年   14篇
  1977年   7篇
  1976年   4篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
We consider long-slit emission-line spectra of galactic nuclei when the slit is wider than the instrumental point spread function, and the target has large velocity gradients. The finite width of the slit generates complex distributions of brightness at a given spatial point in the measured spectrum, which can be misinterpreted as coming from additional physically distinct nuclear components. We illustrate this phenomenon for the case of a thin disc in circular motion around a nuclear black hole (BH). We develop a new method for estimating the mass of the BH that exploits a feature in the spectrum at the outer edge of the BH's sphere of influence, and therefore gives higher sensitivity to BH detection than traditional methods. Moreover, with this method we can determine the BH mass and the inclination of the surrounding disc separately, whereas the traditional approach to BH estimation requires two long-slit spectra to be taken. We show that, with a given spectrograph, the detectability of a BH depends on the sense of rotation of the nuclear disc. We apply our method to estimate the BH mass in M84 from a publicly available spectrum, and recover a value four times lower than that published previously from the same data.  相似文献   
992.
Under the two initial 1‐D one parameter velocity distribution forms (one is normal, the other is exponential), the z direction scale height evolution of normal neutron stars in the Galaxy is studied by numerical simulation. We do statistics for the cases at different time segments, also do statistics for the cumulative cases made of each time segment. The results show in the cumulative cases the evolution curves of the scale heights are smoother than in the each time segment, i.e., the cumulation improve the signal‐to‐noise ratio. Certainly the evolution cases are different at different Galactic disk locations, which also have very large difference from the average cases in the whole disk. In the initial stages of z evolution of normal neutron stars, after the beginning transient states, the cumulative scale heights increase linearly with time, and the cumulative scale height increasing rates have linear relationship with the initial velocity distribution parameters, which have larger fluctuation in the vicinity of the Sun than in the whole disk. We utilize the linear relationship of the cumulative scale height increasing rates vs. the initial velocity distribution parameters in the vicinity of the Sun to make comparison with the observation near the Sun. The results show if there is no magnetic decay, then the deserved initial velocity parameters are obvious lower than the present well known results from some authors; whereas if introducing magnetic decay, for the 1‐D normal case we can make consistence among concerning results using magnetic decay time values which are supported by some authors, while for the 1‐D exponential case the results show the lackness of young pulsar samples in the larger z in the vicinity of the Sun (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
993.
The kinematics and elemental abundances of resolved stars in the nearby Universe can be used to infer conditions at high redshift, trace how galaxies evolve and constrain the nature of dark matter. This approach is complementary to direct study of systems at high redshift, but I will show that analysis of individual stars allows one to break degeneracies, such as between star formation rate and stellar Initial Mass Function, that complicate the analysis of unresolved, distant galaxies (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
994.
We analytically generalize the well-known solution of steady supersonic spherically symmetric gas accretion onto a star (Bondi 1952) for an iron atmosphere with completely degenerate electrons with an arbitrary degree of relativity. This solution is used for typical physical conditions in the vicinity of protoneutron stars produced by gravitational collapse with masses M 0=(1.4?1.8)M and over a wide range of nonzero “iron gas” densities at infinity, ρ=(104?5×106)g cm?3. Under these conditions, we determine all accretion parameters, including the accretion rate, whose value is ~(10?50)M s?1 at M 0=1.8M (it is a factor of 1.7 lower for M 0=1.4M , because the accretion rate is exactly ∝M 0 2 ). We take into account the effect of accreting-gas rotation in a quasi-one-dimensional approximation, which has generally proved to be marginal with respect to the accretion rate.  相似文献   
995.
The model of a presupernova’s carbon-oxygen (C-O) core with an initial mass of 1.33 M , an initial carbon abundance X C (0) =0.27, and a mean rate of increase in mass of 5 × 10?7 M yr?1 through accretion in a binary system evolved from the central density and temperature ρc=109 g cm?3 and T c=2.05 × 108K, respectively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The evolution and explosion equations included only the carbon burning reaction 12C+12C with energy release corresponding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The ratio of mixing length to convection-zone size αc was chosen as the parameter. Although the model assumptions were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong dependence of its duration on αc. In our calculations with sufficiently large values of this parameter, αc=4.0 × 10?3 and 3.0×10?3, fuel burned in the regime of prompt detonation. In the range 2.0×10?3≥αc≥3.0×10?4, there was initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually, the detonation regime of burning arose, which was triggered from the model surface layers (with m ? 1.33 M ) and propagated deep into the model up to the deflagration front. The generation of model pulsations and the formation of a detonation front are described in detail for αc=1.0 × 10?3.  相似文献   
996.
We compute the specific angular momentum distributions for a sample of low-mass disc galaxies observed by Swaters. We compare these distributions to those of dark matter haloes obtained by Bullock et al. from high-resolution N -body simulations of structure formation in a ΛCDM universe. We find that although the disc mass fractions are significantly smaller than the universal baryon fraction, the total specific angular momenta of the discs are in good agreement with those of dark matter haloes. This suggests that discs form out of only a small fraction of the available baryons, but yet manage to draw most of the available angular momentum. In addition we find that the angular momentum distributions of discs are clearly distinct from those of the dark matter; discs lack predominantly both low and high specific angular momenta. Understanding these findings in terms of a coherent picture for disc formation is challenging. Cooling, feedback and stripping, which are the main mechanisms to explain the small disc mass fractions found, seem unable to simultaneously explain the angular momentum distributions of the discs. In fact, it seems that the baryons that make up the discs must have been born out of angular momentum distributions that are clearly distinct from those of ΛCDM haloes. However, the dark and baryonic mass components experience the same tidal forces, and it is therefore expected that they should have similar angular momentum distributions. Therefore, understanding the angular momentum content of disc galaxies remains an important challenge for our picture of galaxy formation.  相似文献   
997.
We present a model-atmosphere analysis for the bright ( V ∼13) star ZNG-1, in the globular cluster M10. From high-resolution ( R ∼40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T eff=26 500±1000 K and log  g =3.6±0.2 dex . A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas–dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号