A combined sedimentological and mineralogical study of several mid-Cretaceous sequences of the western Betic Cordillera and northern Rif has lead to the distinction of three main palaeogeographic areas. The basins of these areas received influxes of terrigenous sediments from different source areas. The southern Iberian margin was fed from the Iberian palaeocontinent and its clay-mineral association is characterized by a high content of well crystallized illite and kaolinite; the distal part of this margin was locally starved of continental sedimentation, but contains a considerable clayey contribution, probably oceanic in origin, made up mainly of smectites, illite and palygorskite. The sediments in the North African margin and the southern part of the North African Flysch Trough came from the African continent, the typical Aptian-Albian clay-mineral association being well crystallized illite, illite-smectite mixed layers, kaolinite, chlorite and lesser quantities of vermiculite. The terrigenous supply to the Mauritanian Realm of the North African Flysch Trough came from the Meso-Mediterranean terrane, and its usual Aptian-Albian clay association is illite, vermiculite, illite-smectite mixed layers and kaolinite. A significant change in the clay mineralogy occurred during the late Albian-early Cenomanian in the two former areas, consisting of a decrease in the detrital supply and a concomitant increase in smectites and palygorskite.The sedimentological and mineralogical evolution of this area was controlled by a combination of tectonic, eustatic and climatic changes in the westernmost Tethys during the mid-Cretaceous. 相似文献
Incorporation of void ratio as a state variable into constitutive models allows, in principle, to use a single set of parameters for soils with different OCRs. Two sets of experimental data on reconstituted clays are used for evaluation of three constitutive models of different complexity (Modified Cam clay model, 3SKH model, hypoplastic model for clays). Although all the models predict the influence of OCR correctly from the qualitative point of view, quantitative comparison using a suitable scalar error measure reveals merits and shortcomings of different models. 相似文献
Stabilization of the swelling clay structure is attempted by intercalation of Mg(OH)2 and the development of a brucite interlayer between the clay layers. The properties of the product obtained by applying the technique, formulated as described in a previous work, are considered here. The materials used were Wyoming bentonite (USA), Fuller's Earth (UK), kaolinite, illite, lignite, and silica gels. The Mg(OH)2-clay products were examined by the methylene blue dye test, X-ray diffraction analysis (XRD), differential thermal analysis (DTA), and derivative thermogravimetry analysis (DTGA). From the results obtained it is concluded that: the Mg-hydroxide is adsorbed by swelling clays both on their external and internal surface, whereas it is adsorbed on the external surface by non-swelling clays. The internally adsorbed phase of Mg-hydroxide forms an ill-defined interlayer of brucite, retarding swelling, whereas the external phase covers the particles modifying drastically their surface properties, like the adsorption of the MB dye. The material produced after precipitation of Mg-hydroxide on swelling clays (smectites) did not re-expand on wetting or after glycolation. The adsorption of MB dye was also reduced by some 80–90%, due to coating effect, preventing the measurements of the external surface area of the clay by polar molecules. The principal forces involved in the process are believed to be physical adsorption on the external surface, along with chemisorption and some chemical bonding, mostly in the internal surface. Cementation due to crystallization and, in the long term, some pozzolanic reactions take also place. Internal adsorption of the Mg-hydroxide is postulated to be in the form of positively charged mono- and/or small polymers and it is, chiefly, diffusion controlled. Since Mg-hydroxide is internally adsorbed by swelling clays, whereas Ca-hydroxide(lime) is not, and the (Mg, Ca)-clay aggregates are more stable than the Ca-clay or the Mg-one, the combination of the two hydroxides could give better results in soil stabilization than each hydroxide alone. 相似文献
Clayey sand can be considered as a composite matrix of coarse and fine grains. The interaction between coarser and finer grain matrices affects the overall stress–strain behavior of these soils. Intergranular void ratio, es (which is the void ratio of the coarser grain matrix) can be utilized as an alternative parameter to express the compressive response of such soils. Oedometer tests conducted on reconstituted kaolinite–sand mixtures indicate that initial conditions, percentage of fines, and stress conditions influence the compression characteristics evidently. Tests showed that, up to a fraction of fines, which is named as transition fines content (FCt), compression behavior of the mixtures is mainly controlled by the sand grains. When concentration of fines exceeds FCt, kaolinite controls the compression. It was found that FCt varies between 19% and 34% depending on the above mentioned factors. This range of fines content is also consistent with various values reported in literature regarding the strength alteration. Performed direct shear tests revealed that there is also a close relationship between transition fines content and shear strength, which is harmonic with the oedometer test results. 相似文献
The understanding of the thermo-hydro-mechanical behaviour of a clay barrier is needed for the prediction of its final in situ properties after the hydration and thermal transient in a radioactive waste repository.
As part of the CEC 1990–1994 R&D programme on radioactive waste management and storage, the CEA (Fr), CIEMAT (Sp), ENRESA (Sp), SCK · CEN (B), UPC (Sp) and UWCC (UK) have carried out a joint project on unsaturated clay behaviour (Volckaert et al., 1996). The aim of the study is to analyse and model the behaviour of a clay-based engineered barrier during its hydration phase under real repository conditions. The hydro-mechanical and thermo-hydraulic models developed in this project have been coupled to describe stress/strain behaviour, moisture migration and heat transfer. A thermo-hydraulic model has also been coupled to a geochemical code to describe the migration and formation of chemical species.
In this project, suction-controlled experiments have been performed on Boom clay (B), FoCa clay (Fr) and Almeria bentonite (Sp). The aim of these experiments is to test the validity of the interpretive model developed by Alonso and Gens (Alonso et al., 1990), and to build a database of unsaturated clay thermo-hydro-mechanical parameters. Such a database can then be used for validation exercises in which in situ experiments are simulated.
The Boom clay is a moderately swelling clay of Rupellian age. It is studied at the SCK · CEN in Belgium as a potential host rock for a radioactive waste repository. In this paper, suction-controlled experiments carried out on Boom clay by SCK · CEN are described. SCK · CEN has performed experiments to measure the relation between suction, water content and temperature and the relation between suction, stress and deformation. The applied suction-control techniques and experimental setups are detailed. The results of these experiments are discussed in the perspective of the model of Alonso and Gens. The influence of temperature on water uptake was rather small. The measured swelling-collapse behaviour can be explained by the Alonso and Gens model. 相似文献