首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3871篇
  免费   834篇
  国内免费   1375篇
测绘学   197篇
大气科学   938篇
地球物理   376篇
地质学   949篇
海洋学   2851篇
天文学   26篇
综合类   356篇
自然地理   387篇
  2024年   20篇
  2023年   75篇
  2022年   145篇
  2021年   188篇
  2020年   194篇
  2019年   252篇
  2018年   204篇
  2017年   181篇
  2016年   194篇
  2015年   238篇
  2014年   244篇
  2013年   318篇
  2012年   235篇
  2011年   232篇
  2010年   185篇
  2009年   263篇
  2008年   232篇
  2007年   280篇
  2006年   258篇
  2005年   252篇
  2004年   223篇
  2003年   219篇
  2002年   183篇
  2001年   179篇
  2000年   156篇
  1999年   147篇
  1998年   134篇
  1997年   115篇
  1996年   97篇
  1995年   86篇
  1994年   85篇
  1993年   68篇
  1992年   41篇
  1991年   32篇
  1990年   29篇
  1989年   18篇
  1988年   20篇
  1987年   11篇
  1986年   2篇
  1985年   14篇
  1984年   3篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有6080条查询结果,搜索用时 203 毫秒
881.
Spatial patterns of interannual sea level variations in the South China Sea (SCS) are investigated by analyzing an EOF-based 2-dimensional past sea level reconstruction from 1950 to 2009 and satellite altimetry data from 1993 to 2009. Long-term tide gauge records from 14 selected stations in this region are also used to assess the quality of reconstructed sea levels and determine the rate of sea level along the coastal area. We found that the rising rate of sea levels derived from merged satellite altimetry data during 1993–2009 and past sea level reconstruction over 1950–2009 is about 3.9 ± 0.6 mm/yr and 1.7 ± 0.1 mm/yr, respectively. For the longer period, this rate is not significantly different from the global mean rate (of 1.8 ± 0.3 mm/yr). The interannual mean sea level of the SCS region appears highly correlated with Niño 4 indices (a proxy of El Niño-Southern Oscillation/ENSO), suggesting that the interannual sea level variations over the SCS region is driven by ENSO events. Interpolation of the reconstructed sea level data for 1950–2009 at sites where tide gauge records are of poor quality (either short or gapped) show that sea level along the Chinese coastal area is rising faster than the global mean rate of 1.8 mm/yr. At some sites, the rate is up to 2.5 mm/yr.  相似文献   
882.
This technical note aims to provide a quick reference and some computational examples for the conversion between Antarctic ice-mass changes and global sea level equivalent (SLE) changes using a few assumptions that computationally simplify this complex problem and that acknowledge gaps in our knowledge of the Antarctic environment. A number of factors involved in the conversion process are discussed, and the sensitivity of the conversion result to certain aspects is analyzed. It was found that the global ocean area calculated from a recently improved global shoreline dataset has little impact on the uncertainty of the SLE estimation. SLE estimation using satellite gravity observations, such as those by GRACE, are sensitive to glacial isostatic adjustment (GIA) models. One more important result from the computation is that the effective density of the volume that is gained or lost during mass change may greatly affect the outcome of the conversion if it differs greatly from the actual density of the firn/ice layers. Finally, a table of computational examples is provided for reference under some assumptions for simplifying the computation.  相似文献   
883.
Many ship-borne geodetic surveys at sea, such as Global Navigation Satellite System (GNSS)-based sea surface height (SSH) observation, acoustic profiling of the bottom, and others, deal with a dynamic topography which undergoes several changes during the survey campaign (e.g., changes in tide, salinity and currents). Those changes affect the measurements and may causes for some variations in the results. There are several methods for tidal variations correction, being the most dominant phenomena, such as tidal zoning, tidal constituent interpolation or ocean tidal models. In this study, we have implemented the tidal constituent interpolation method for the Israeli coastline in order to assess its quality and determine whether it is suitable for use in this particular region. This paper depicts the interpolation method, discusses some difficulties in the implementation for the Israeli coast and presents results from exemplary processing. In addition, we compare the results to those obtained using global and regional tidal models.  相似文献   
884.
《Marine Geodesy》2013,36(3-4):201-238
TOPEX/Poseidon is a well known success, with the operational altimeter (TOPEX) and the experimental one (Poseidon-1), providing data of unprecedented quality. However, there are two major differences between the TOPEX and Poseidon-1 radar altimeters on board TOPEX/Poseidon. The first is related to the estimated range noise; the second is linked to the sea-state bias (SSB) model estimates. Since the recent launch of the Jason-1 radar altimeter (also called Poseidon-2), we have been cross-comparing these three systems to better characterize each of them. Analyzing standard user products, we have found that Jason-1 is behaving like Poseidon-1 and thus shows the same observed differences when compared with TOPEX. A comparative analysis of their features was performed, starting from the on-board acquisition of the ocean return and ending with the ground generation of the high level accuracy oceanographic product. The results lead us to believe that the sources for these differences lie in both the waveform tracking processing and the presence or abscence of a retracking procedure whether on-board or on ground. Because Poseidon-1 and Jason-1 waveforms are retracked while TOPEX waveforms are not in the products distributed to the users, we have applied the same ground retracking algorithm to the waveforms of the three radar altimeters to get consistent data sets. The analysis of the outputs has shown that: (a) the noise level for the three radar altimeters is definitively the same, and (b) the source of the relative SSB between Jason-1 and TOPEX lies in the different behavior of the on-board tracking softwares.  相似文献   
885.
《Marine Geodesy》2013,36(3-4):383-397
The Jason-1 Operational Sensor Data Record (OSDR) is intended as a wind and wave product that is aimed towards near-real–time (NRT) meteorological applications. However, the OSDR provides most of the information that is required to determine altimetric sea surface heights in NRT. The exceptions include a sufficiently accurate orbit altitude, and pressure fields to determine the dry troposphere path delay correction. An orbit altitude field is provided on the OSDR but has accuracies that range between 8–25 cm (RMS). However, tracking data from the on-board BlackJack GPS receiver are available with sufficiently short latency for use in the computation of NRT GPS-based orbit solutions. The orbit altitudes from these NRT orbit solutions have typical accuracies of < 3.0 cm (RMS) with a latency of 1–3 h, and < 2.5 cm (RMS) with a latency of 3–5 h. Meanwhile, forecast global pressure fields from the National Center for Environmental Prediction (NCEP) are available for the NRT computation of the dry troposphere correction. In combination, the Jason-1 OSDR, the NRT GPS-based orbit solutions, and the NCEP pressure fields can be used to compute sea surface height observations from the Jason-1 mission with typical latencies of 3–5 h, and have differences with those from the 2–3 day latency Interim Geophysical Data Records of < 5 cm (RMS). The NRT altimetric sea surface height observations are potentially of benefit to forecasting, tactical oceanography, and natural hazard monitoring.  相似文献   
886.
Guest editorial     
George A. Maul 《Marine Geodesy》2013,36(3-4):167-168
The Jason-1 satellite was launched on 7 December 2001 with the primary objective of continuing the high accuracy time series of altimeter measurements that began with the TOPEX/Poseidon mission in 1992. To achieve this goal, it is necessary to validate the performance of the Jason-1 measurement system, and to verify that its error budget is at least at the same level as that of the TOPEX/Poseidon mission. The article reviews the main components of the Jason-1 altimetric error budget from instrument characterization to the geophysical use of the data. Using the Interim Geophysical Data Records (16DR) that were distributed to the Jason-1 Science Working Team during the verification phase of the mission, it is shown that the Jason-1 mission is performing well enough to continue studies of the large-scale features of the ocean, and especially to continue time series of mean sea-level variations with an accuracy comparable to TOPEX/Poseidon.  相似文献   
887.
渤、黄海冬季海冰对大气环流及气候变化的响应   总被引:4,自引:3,他引:1  
受全球气候变暖影响,渤、黄海冬季气候呈明显的变暖趋势。在1951-2010年共60年中,后30年较前30年,气温升高了1.6℃,升幅异常显著。与此相对应,渤、黄海冬季海冰的冰级下降了0.6级。渤、黄海冰情持续偏轻与全球气候变暖趋势相当一致。冬季渤、黄海气温异常是对全球大气环流变化的响应,直接受同期东亚大气环流制约。研究表明,渤海海冰和大气环流的关系是清楚的,这对预测渤、黄海海冰具有重要意义。  相似文献   
888.
Abstract

In some areas, the sea floor contains a surface layer with high porosity and a thickness of 10–30 cm. The characters of an explosive pulse reflected at such a sea floor are discussed. The thickness and porosity estimations for the surface layer by acoustic method are studied, and the estimated and measured results are listed.  相似文献   
889.
To investigate the behavior of dredged-sea-sand fill compacted inside tide embankments with a damaged geosynthetic mat, centrifugal model tests and numerical simulation were conducted, both considering variations in sea level. The results from the three centrifugal model tests demonstrate that the subsidence of the dredged-sea-sand fill inside tide embankments with a damaged geosynthetic mat was strongly affected by the loss of dredged-sea-sand into the filter layers with large particles and a decrease in the bearing capacity of the filter layers with small particles. In addition, a comparison of the test and simulation results confirms that the loss of sand into the filter layer and the subsidence of the dredged-sea-sand fill were well reproduced by the numerical simulation.  相似文献   
890.
Abstract

Laboratory tests were conducted on compacted marine sediments to study the effect of salt concentration of permeating fluid on its permeability characteristics. Deep sea sediment samples were collected from water depths varying from 3700 to 4500 m off Mauritius coast. Liquid limit and plasticity index varied widely from 45 to 75 and 10 to 35, respectively. Permeability was found at different void ratios with distilled water and 0.2, 0.4, and 0.8 N NaCl solutions as permeating fluid. It was found that permeability increases with an increase in salt concentration for a given void ratio. This is explained by diffused double layer theory. Also, the rate of increase in permeability decreases with increase in salt concentration. The effect of salt concentration seemed to be less at higher void ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号