首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   51篇
  国内免费   71篇
测绘学   5篇
大气科学   112篇
地球物理   114篇
地质学   113篇
海洋学   108篇
天文学   375篇
综合类   8篇
自然地理   23篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   17篇
  2020年   7篇
  2019年   26篇
  2018年   16篇
  2017年   27篇
  2016年   29篇
  2015年   17篇
  2014年   22篇
  2013年   21篇
  2012年   18篇
  2011年   22篇
  2010年   22篇
  2009年   77篇
  2008年   85篇
  2007年   105篇
  2006年   65篇
  2005年   61篇
  2004年   50篇
  2003年   51篇
  2002年   34篇
  2001年   19篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
排序方式: 共有858条查询结果,搜索用时 234 毫秒
731.
732.
733.
The generation over two-dimensional grids of normally distributed random fields conditioned on available data is often required in reservoir modeling and mining investigations. Such fields can be obtained from application of turning band or spectral methods. However, both methods have limitations. First, they are only asymptotically exact in that the ensemble of realizations has the correlation structure required only if enough harmonics are used in the spectral method, or enough lines are generated in the turning bands approach. Moreover, the spectral method requires fine tuning of process parameters. As for the turning bands method, it is essentially restricted to processes with stationary and radially symmetric correlation functions. Another approach, which has the advantage of being general and exact, is to use a Cholesky factorization of the covariance matrix representing grid points correlation. For fields of large size, however, the Cholesky factorization can be computationally prohibitive. In this paper, we show that if the data are stationary and generated over a grid with regular mesh, the structure of the data covariance matrix can be exploited to significantly reduce the overall computational burden of conditional simulations based on matrix factorization techniques. A feature of this approach is its computational simplicity and suitability to parallel implementation.  相似文献   
734.
735.
736.
It has become increasingly apparent that traditional hydrodynamical simulations of galaxy clusters are unable to reproduce the observed properties of galaxy clusters, in particular overpredicting the mass corresponding to a given cluster temperature. Such overestimation may lead to systematic errors in results using galaxy clusters as cosmological probes, such as constraints on the density perturbation normalization σ 8. In this paper we demonstrate that inclusion of additional gas physics, namely radiative cooling and a possible pre-heating of gas prior to cluster formation, is able to bring the temperature–mass relation in the innermost parts of clusters into good agreement with recent determinations by Allen, Schmidt & Fabian using Chandra data.  相似文献   
737.
738.
739.
740.
Recent developments in numerical algorithms have enabled the construction of three‐dimensional models for the prediction of flows in open channels. These advances encompass improvements in both numerical solutions and the process representation required for an accurate system definition. However, to date, there is still little agreement on how to assess systematically and report the credibility of these simulations. This paper addresses this problem by adopting a Grid Convergence Index approach. The results indicate, for two simple hypothetical cases, a zero‐degree confluence and a meander bend, that the numerical code can be verified to an acceptable numerical standard. However, it is shown that this does not mean that verification is complete, as the literature implies, as whilst the discretization resolution may be sufficient to verify one of the model variables it does not imply that every variable has converged. Furthermore, the scheme may still be insufficient to capture all the processes of interest that are operating within the chosen environment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号