首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1242篇
  免费   374篇
  国内免费   549篇
测绘学   10篇
大气科学   49篇
地球物理   108篇
地质学   1706篇
海洋学   130篇
天文学   83篇
综合类   36篇
自然地理   43篇
  2024年   24篇
  2023年   56篇
  2022年   118篇
  2021年   121篇
  2020年   118篇
  2019年   130篇
  2018年   111篇
  2017年   105篇
  2016年   207篇
  2015年   127篇
  2014年   128篇
  2013年   120篇
  2012年   98篇
  2011年   75篇
  2010年   38篇
  2009年   72篇
  2008年   56篇
  2007年   66篇
  2006年   72篇
  2005年   48篇
  2004年   47篇
  2003年   19篇
  2002年   22篇
  2001年   27篇
  2000年   22篇
  1999年   21篇
  1998年   18篇
  1997年   17篇
  1996年   14篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   10篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   10篇
  1987年   1篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
排序方式: 共有2165条查询结果,搜索用时 31 毫秒
21.
我国西北干旱半干旱地区,生态环境极为脆弱,土地沙漠化问题十分突出。防风固沙,恢复植被,遏制沙漠化,改善生态环境,是我国西部大开发战略和加快西部经济腾飞的主要任务之一。防风治沙首先要解决的问题是固沙保水。文章提出了利用宁夏腾格里沙漠东南缘中卫县沙坡头地区香山北麓的黑色泥质页岩在自然条件下天然胶结成壳作用于固沙的可能性。这类黑色泥质页岩具有遇水则吸水软化,风干则形成薄硬壳之特点。在斜坡坡面上或坡脚风化破碎或构造破碎或人工开挖的黑色泥质页岩碎块堆积的表面常形成1层1~5cm的硬壳。这类黑色泥质页岩在500℃时灼减量高达17.56%,说明具有很高的有机质含量,同时P2O5,和K2O含量也较高,有利于成壤和植物生长。黑色泥质页岩的天然胶结成壳作用与地表破碎的黑色泥质页岩堆积和特定的干旱半干旱气候以及本身成分、结构有关。这一硬壳层不但具有一定的强度和抗风蚀能力,而且还具有一定的吸水性和保水性。因此,借鉴草方格固沙方法,就地取材,充分利用黑色泥质页岩在自然条件下的天然胶结成壳性能,用于沙漠治理中的固沙。进一步对黑色泥质页岩天然胶结成壳的机理进行深入研究,并开展黑色泥质页岩固沙试验研究,有可能为腾格里沙漠治理开辟新的途径。  相似文献   
22.
The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism.  相似文献   
23.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   
24.
25.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
Geochemical analysis of dump materials from the opencast Maritsa Iztok mines, Bulgaria, was carried out based on biomarker assemblages of hydrocarbon fractions. Organic matter (OM) and secondary transformations in three representative samples (massive black claystones and materials from the Iztok and Staroselets dump sites) were studied using geochemical proxies.A number of differences were recognised in the respective OM compositions of the samples compared to both published data and between the individual dump samples themselves. The ОM of the studied samples was found to be polar, but also contains some apolar compounds. It consists mainly of resins and asphalthenes. Claystone OM is of the dispersed type, with intense oxidative-reductive interactions in a lacustrine environment resulting in its transformation into an inert material. Dump sample kerogen is of Type II and mixed Type II/III. In all samples, “odd” numbered n-alkanes are found in higher amounts. Diterpenoids (С19, С20) with pimarane, abietane and phyllocladane skeletons are preponderant. Tri- and tetracyclic terpenoids and steranes have been identified in the black claystones OM only. Hopanes are present in low amounts in extractable OM from all three samples. Biomarkers indicate that black claystone OM is formed from aqueous flora, with a minor supply of gymnosperms (mainly G. Sequoia). Iztok Dump OM is structured by higher plants with an aqueous vegetation input. The Staroselets Dump OM formation is assigned to an active microbial reworking of aqueous vegetation and bacteria with a minor coniferous supply. Different geochemical parameters admit anoxic stratified bottom waters for the black claystones with an addition of deep water stagnation for Staroselets sample in a Maritsa Iztok Basin (MIB) aqueous environment.An attempt was also made to track the effect of secondary processes (oxidation, destruction, dearomatisation), temperature, water drainage and wash-out on dump materials. Leaching and weak degradation processes in the MIB dump environment are likely for a time span of ca. 40–50 years, considering the low percentage of short-chain n-alkanes, long-chain prevalence and low Pr/nC17 and Ph/nC18 ratios, with the Iztok Dump sample experiencing more advanced transformations.  相似文献   
27.
28.
Shale gas is one of the most promising unconventional resources both in China and abroad. It is known as a form of self-contained source-reservoir system with large and continuous dimensions. Through years of considerable exploration efforts, China has identified three large shale gas fields in the Fuling, Changning and Weiyuan areas of the Sichuan Basin, and has announced more than 540 billion m~3 of proven shale gas reserves in marine shale systems. The geological theories for shale gas development have progressed rapidly in China as well. For example, the new depositional patterns have been introduced for deciphering the paleogeography and sedimentary systems of the Wufeng shale and Longmaxi shale in the Sichuan Basin. The shale gas storage mechanism has been widely accepted as differing from conventional natural gas in that it is adsorbed on organic matter or a mineral surface or occurs as free gas trapped in pores and fractures of the shale. Significant advances in the techniques of microstructural characterization have provided new insights on how gas molecules are stored in micro- and nano-scale porous shales. Furthermore, newly-developed concepts and practices in the petroleum industry, such as hydraulic fracturing, microseismic monitoring and multiwell horizontal drilling, have made the production of this unevenly distributed but promising unconventional natural gas a reality. China has 10–36 trillion m~3 of promising shale gas among the world's whole predicted technically recoverable reserves of 206.6 trillion m~3. China is on the way to achieving its goal of an annual yield of 30–50 billion m~3 by launching more trials within shale gas projects.  相似文献   
29.
As a milestone of the entire energy industry, unconventional resources have inevitably swept the world in the last decade, and will certainly dominate the global oil and gas industry in the near future. Eventually, the “unconventional” will become “conventional”. Along with the rapid development, however, some issues have emerged, which are closely related to the viability of unconventional resources development. Under the current circumstances of low crude oil and gas price, coupled with the prominent environmental concerns, the arguments about the development and production of unconventional resources have been recently heated up. This work introduced the full-blown aspects of unconventional resources especially shale reservoirs, by discussing their concepts and definitions, reviewing the shale gas and shale oil development history and necessity, analyzing the shale plays’ geology and petroleum systems with respects to key hydrocarbon accumulation elements and mechanisms, and summarizing the technology resolution. This study also discussed the relevant key issues, including significant estimation uncertainty of technically recoverable resources, the equivocal understanding of complex geology preventing the production and technologies implementation optimization, the difficulties of experiences and technologies global expanding, and the corresponding risks and uncertainties. In addition, based on the latest production and exploration data, the future perspective of the unconventional resources was depicted from global unconventional resources assessments, technology development, and limitations constraining the development.  相似文献   
30.
运用高压压汞、液氮吸附及渗透率测试等实验,利用极差、突进系数、变异系数等参数,表征煤系页岩孔渗特征及孔隙层间非均质性,分析孔隙层间非均质性主控因素。结果表明:河南义马地区上、下石盒子组泥页岩微孔与小孔较为发育,山西组大孔较为发育,分别提供了气体吸附附着面积和储存运移空间;上石盒子组孔容与孔径相对偏差最小,孔隙分布均匀,山西组比表面积相对偏差最小,表面积分布均匀;随围压增大,渗透率不断降低,且满足负指数相关关系;渗透率级差、突进系数和变异系数显示下石盒子组渗透率非均质性较弱,山西组渗透率非均质性很弱,更易于压裂开发。非均质性宏观上主要受沉积物质组成和构造改造作用影响,微观上受成岩演化影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号