首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1044篇
  免费   110篇
  国内免费   158篇
测绘学   1篇
大气科学   209篇
地球物理   156篇
地质学   162篇
海洋学   694篇
天文学   14篇
综合类   11篇
自然地理   65篇
  2024年   2篇
  2023年   4篇
  2022年   22篇
  2021年   24篇
  2020年   22篇
  2019年   30篇
  2018年   42篇
  2017年   24篇
  2016年   38篇
  2015年   30篇
  2014年   65篇
  2013年   64篇
  2012年   26篇
  2011年   55篇
  2010年   40篇
  2009年   66篇
  2008年   80篇
  2007年   81篇
  2006年   69篇
  2005年   60篇
  2004年   59篇
  2003年   55篇
  2002年   51篇
  2001年   45篇
  2000年   52篇
  1999年   27篇
  1998年   25篇
  1997年   42篇
  1996年   25篇
  1995年   21篇
  1994年   12篇
  1993年   9篇
  1992年   12篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
排序方式: 共有1312条查询结果,搜索用时 15 毫秒
41.
42.
43.
The data from a recent magnetic compilation by Verhoefet al. (1991) off west Africa were used in combination with data in the western Atlantic to review the Mesozoic plate kinematic evolution of the central North Atlantic. The magnetic profile data were analyzed to identify the M-series sea floor spreading anomalies on the African plate. Oceanic fracture zones were identified from magnetic anomalies and seismic and gravity measurements. The identified sea floor spreading anomalies on the African plate were combined with those on the North American plate to calculate reconstruction poles for this part of the central Atlantic. The total separation poles derived in this paper describe a smooth curve, suggesting that the motion of the pole through time was continuous. Although the new sea floor spreading history differs only slightly from the one presented by Klitgord and Schouten (1986), it predicts smoother flowlines. On the other hand, the sea floor spreading history as depicted by the flowlines for the eastern central Atlantic deviates substantially from that of Sundvik and Larson (1988). A revised spreading history is also presented for the Cretaceous Magnetic Quiet Zone, where large changes in spreading direction occurred, that can not be resolved when fitting magnetic isochrons only, but which are evident from fracture zone traces and directions of sea floor spreading topography.Deceased 11 November 1991  相似文献   
44.
45.
46.
47.
48.
49.
The regime shift of the 1920s and 1930s in the North Atlantic   总被引:6,自引:3,他引:6  
During the 1920s and 1930s, there was a dramatic warming of the northern North Atlantic Ocean. Warmer-than-normal sea temperatures, reduced sea ice conditions and enhanced Atlantic inflow in northern regions continued through to the 1950s and 1960s, with the timing of the decline to colder temperatures varying with location. Ecosystem changes associated with the warm period included a general northward movement of fish. Boreal species of fish such as cod, haddock and herring expanded farther north while colder-water species such as capelin and polar cod retreated northward. The maximum recorded movement involved cod, which spread approximately 1200 km northward along West Greenland. Migration patterns of “warmer water” species also changed with earlier arrivals and later departures. New spawning sites were observed farther north for several species or stocks while for others the relative contribution from northern spawning sites increased. Some southern species of fish that were unknown in northern areas prior to the warming event became occasional, and in some cases, frequent visitors. Higher recruitment and growth led to increased biomass of important commercial species such as cod and herring in many regions of the northern North Atlantic. Benthos associated with Atlantic waters spread northward off Western Svalbard and eastward into the eastern Barents Sea. Based on increased phytoplankton and zooplankton production in several areas, it is argued that bottom-up processes were the primary cause of these changes. The warming in the 1920s and 1930s is considered to constitute the most significant regime shift experienced in the North Atlantic in the 20th century.  相似文献   
50.
How are large western hemisphere warm pools formed?   总被引:1,自引:0,他引:1  
During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950–2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer.In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957–58 and 1968–69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances favor the atmospheric bridge, as in 1991–92. Finally, we could find little evidence that interactions internal to the tropical Atlantic are likely to mitigate for or against the formation of the largest warm pools, although they may affect smaller warm pool fluctuations or the warm pool persistence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号