首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   364篇
  国内免费   739篇
测绘学   22篇
大气科学   984篇
地球物理   474篇
地质学   371篇
海洋学   605篇
天文学   59篇
综合类   89篇
自然地理   267篇
  2024年   11篇
  2023年   28篇
  2022年   59篇
  2021年   74篇
  2020年   72篇
  2019年   82篇
  2018年   78篇
  2017年   84篇
  2016年   84篇
  2015年   94篇
  2014年   128篇
  2013年   119篇
  2012年   132篇
  2011年   130篇
  2010年   95篇
  2009年   143篇
  2008年   149篇
  2007年   175篇
  2006年   154篇
  2005年   115篇
  2004年   118篇
  2003年   103篇
  2002年   90篇
  2001年   80篇
  2000年   65篇
  1999年   57篇
  1998年   58篇
  1997年   56篇
  1996年   53篇
  1995年   46篇
  1994年   38篇
  1993年   26篇
  1992年   12篇
  1991年   11篇
  1990年   15篇
  1989年   7篇
  1988年   15篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1983年   1篇
  1980年   2篇
  1978年   2篇
排序方式: 共有2871条查询结果,搜索用时 15 毫秒
811.
Similarity between heat and water vapor turbulent transport in the Atmospheric Surface Layer has been the basis of many engineering models to calculate surface fluxes, including the widely applied Bowen ratio equation, for a long time. Modernly, it is best understood within the context of Monin‐Obkhov Similarity Theory (MOST). In this work we study similarity between temperature and humidity, the Bowen ratio, and turbulent mass and heat transfer coefficients over a tropical lake in Brazil (Furnas Lake). The analysis was partly based on the concept of ‘Surface flux numbers’ recently proposed to diagnose scalar similarity, and considered wind directions and flux footprints. A period of 50 days of 30‐min. micrometeorological runs was used. Several cases of dissimilar temperature‐humidity behavior were found in the data. Both footprint extent and an aggregate temperature‐humidity Surface flux number turned out to be insufficient to diagnose these situations, but separate flux numbers for each scalar were able to diagnose their individual conformity to MOST. Overall, temperature displayed consistently larger relative variances and fluxes in comparison with humidity. The results highlight the need of careful analysis when measurements are made at sites close to land, when flux footprints may extend over there, indicating the possibility of advection effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
812.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
813.
Evaporation can be an important control on stream temperature, particularly in summer when it acts to limit daily maximum stream temperature. Evaporation from streams is usually modelled with the use of a wind function that includes empirically derived coefficients. A small number of studies derived wind functions for individual streams; the fitted parameters varied substantially among sites. In this study, stream evaporation and above-stream meteorological conditions (at 0.5 and 1.5 m above the water surface) were measured at nine mountain streams in southwestern British Columbia, Canada, covering a range of stream widths, temperatures, and riparian vegetation. Evaporation was measured on 20 site-days in total, at approximately hourly intervals, using nine floating evaporation pans distributed across the channels. The wind function was fit using mixed-effects models to account for among-stream variability in the parameters. The fixed-effects parameters were tested using leave-one-site-out cross-validation. The model based on 0.5 m measurements provided improved model performance compared to that based on 1.5 m values, with RMSE of 0.0162 and 0.0187 mm h−1, respectively, relative to a mean evaporation rate of 0.06 mm h−1. Inclusion of atmospheric stability and canopy openness as predictors improved model performance when using the 1.5 m meteorological measurements, with minimal improvement when based on 0.5 m measurements. Of the wind functions reported in the literature, two performed reasonably while five others exhibited substantial bias.  相似文献   
814.
The advanced process-based model, National Integrated Catchment-based Eco-hydrology (NICE)-BGC, which incorporates the whole process of carbon cycling in land, was modified to include the feedback between soil organic content and overland carbon fluxes. It is a crucial and difficult task to evaluate the balance of the terrestrial carbon budget including the effect of inland water robustly. To accomplish this purpose, NICE-BGC was applied to quantify the global biogeochemical carbon cycle closely associated with the complex hydrological cycle during the 36 years between 1980 and 2015. The model demonstrated that the inter-annual variations of carbon cycle have been greatly affected by the extreme weather patterns. In particular, spatial distribution of temporal trends in riverine carbon fluxes and their relation to soil organic carbon (SOC) were analysed between different biomes and major river basins. Although there was a positive relationship between SOC and riverine flux of dissolved organic carbon and particulate organic carbon in the northern boreal region, it is difficult to see this relation in other regions. Further, the evaluation of potential controlling factors of temporal trends in SOC and fluvial carbon exports was also helpful to quantify the inter-annual variation or temporal trend caused by the various effects. SOC was more influenced by temperature variations, whereas riverine carbon exports were mainly determined by precipitation variations. Finally, net land flux including inland water (−1.49 ± 0.50 PgC/year) showed a slight decrease in the carbon sink in comparison with previous values (−2.33 ± 0.50 PgC/year). These results help to distinguish the carbon cycle in different river basins and to re-evaluate carbon cycle change explicitly including the effect of inland water because this effect has been so far implicitly included within the range of uncertainty in the Earth's global carbon cycle comprising land, oceans, and atmosphere.  相似文献   
815.
816.
Soil CO2 flux is strongly influenced by precipitation in many ecosystem types, yet knowledge of the effects of precipitation on soil CO2 flux in semi‐arid desert ecosystems remains insufficient, particularly for sandy soils. To address this, we investigated the response of sandy soil CO2 flux to rainfall pulses in a desert ecosystem in northern China during August–September 2011. Significant changes (P < 0.05) were found in diel patterns of soil CO2 flux induced by small (2.1 mm), moderate (12.4 mm) and large (19.7 mm) precipitation events. Further analysis indicated that rainfall pulses modified the response of soil CO2 flux to soil temperature, including hysteresis between soil CO2 flux and soil temperature, with Fs higher when Ts was increasing than when Ts was decreasing, and the linear relationship between them. Moreover, our results showed that rainfall could result in absorption of atmospheric CO2 by soil, possibly owing to mass flow of CO2 induced by a gradient of gas pressure between atmosphere and soil. After each precipitation event, soil CO2 flux recovered exponentially to pre‐rainfall levels with time, with the recovery times exhibiting a positive correlation with precipitation amount. On the basis of the amounts of precipitation that occurred at our site during the measurement period (August–September), the accumulated rain‐induced carbon absorption evaluated for rainy days was 1.068 g C m?2; this corresponds approximately to 0.5–2.1% of the net primary production of a typical desert ecosystem. Thus, our results suggest that rainfall pulses can strongly influence carbon fluxes in desert ecosystems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
817.
The climatological mean state,seasonal variation and long-term upward trend of 1979–2005 latent heat flux(LHF) in historical runs of 14 coupled general circulation models from CMIP5(Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux(Objectively Analyzed air–sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well,but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region,and the meridional variability of LHF,are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity.Comparing the observed long-term upward trend,the trends of LHF and wind speed are largely underestimated,while trends of SST and air specific humidity are grossly overestimated,which may be the origins of the model biases in reproducing the trend of LHF.  相似文献   
818.
黄金廷  马洪云  张俊  董佳秋  王冬 《地质通报》2015,34(11):2074-2082
土壤有效热导系数和水流通量是研究大气-土壤系统水分转化的重要变量。采用动态回归模型(DHR)获取土壤温度的振幅和相位变化,联合土壤水热耦合方程的解析解估算土壤有效热导系数和土壤水流通量,并将该方法应用于毛乌素沙地的土壤水流通量估算中。结果显示,实例研究估算获得的有效热导系数在10~(-7)m~2/s数量级变化,且随振幅比的增加呈指数增加,随相位差的增加呈指数衰减。当土壤含水率小于0.08时,有效热导系数呈线性增加;当土壤含水率大于0.08时,接近恒定值(定量0.08),土壤水流通量随土壤含水率的变化无明显的线性关系。  相似文献   
819.
马虹  陈亚宁  李卫红 《中国沙漠》2014,34(1):108-117
用涡度相关法对新疆塔里木河下游荒漠河岸柽柳(Tamarix chinensis)灌丛进行了1个生长季的实验观测,利用同步气象资料探讨了干旱胁迫环境下柽柳灌丛的近地面微气象和能量平衡特征,并运用普通最小二乘法线性回归及能量平衡比率法对比分析了不同天气条件下柽柳的日能量平衡变化和分配的差异。结果表明:观测期内柽柳灌丛的能量平衡闭合率为72.3%,地表能量通量和能量分配特征呈明显的单峰型二次曲线,地表净辐射通量和潜热通量是柽柳灌丛生长季的主要能量收入项和支出项;生长季内柽柳灌丛的能量平衡残差出现系统性、正负交替的日循环规律;在不同天气条件下,能量的分配转化和平衡程度均有明显差异,晴天的能量闭合状况好于阴天、降雨及扬沙天气,白天好于夜间;能量平衡比率在日出前与日落后的变化显著,且出现瞬时能量过闭合现象。受光合作用的影响,能量平衡闭合程度及碳通量的变化与不同天气下的温度及水分密切相关。  相似文献   
820.
This study investigated interdecadal variability of June–October(JJASO) the large and small warm pools in western Pacific and their association with rainfall anomalies using station and reanalysis data from 1958 to 2008.The results indicated that the large and small warm pools in western Pacific showed an interdecadal shift around 1986.The large warm pool years over western Pacific were found after 1986,whereas the small warm pool years were often seen throughout the periods before 1986.The analysis results also showed that there were obvious interdecadal variability in JJASO rainfall in Southeast China and warm pool in western Pacific.During 1958–1985(small warm pool years),the decrease in rainfall was associated with tropospheric moisture divergence and sinking motion over Southeast China and warm pool in western Pacific.However,during 1986–2008(large warm pool years),the increase in rainfall was associated with tropospheric moisture convergence and ascending motion.Further analysis showed that large warm pool contributed to the increase in surface latent heat fluxes over warm pool in the western Pacific.Thus,there was an increase in the amount of water vapor over Southeast China and warm pool in western Pacific,which contributed to increased rainfall in these regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号