首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   68篇
  国内免费   181篇
地球物理   25篇
地质学   555篇
海洋学   6篇
综合类   8篇
自然地理   21篇
  2024年   1篇
  2023年   6篇
  2022年   12篇
  2021年   19篇
  2020年   14篇
  2019年   15篇
  2018年   11篇
  2017年   22篇
  2016年   19篇
  2015年   14篇
  2014年   24篇
  2013年   32篇
  2012年   28篇
  2011年   16篇
  2010年   16篇
  2009年   23篇
  2008年   23篇
  2007年   22篇
  2006年   35篇
  2005年   17篇
  2004年   27篇
  2003年   17篇
  2002年   22篇
  2001年   17篇
  2000年   19篇
  1999年   24篇
  1998年   19篇
  1997年   15篇
  1996年   17篇
  1995年   17篇
  1994年   10篇
  1993年   8篇
  1992年   9篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1985年   1篇
排序方式: 共有615条查询结果,搜索用时 15 毫秒
11.
造山作用概念和分类   总被引:1,自引:0,他引:1  
本文从造山作用的特征标志出发讨论了Sengor造山带定义的缺陷, 总结了造山作用的六条特征标志,并给出了造山作用新的定义。该定义包括了造山作用的起因、特征标志和大地构造背景。评述了造山带陆内、陆缘、陆间三分法方案的不足之处和剪压造山带的单独设类问题,提出了造山带板内、俯冲、碰撞三分方案。针对碰撞造山带,笔者在总结探讨现有分类方案的优点的基础上, 提出碰撞造山带陆陆碰撞、碰撞增生、弧陆碰撞和无大陆型碰撞造山带四分法方案,其中无大陆型碰撞造山带是描述陆壳物质形成初期计体拼合聚合过程的新类型。  相似文献   
12.
13.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   
14.
15.
16.
17.
西天山艾肯达坂组火山岩系同位素定年及其构造意义   总被引:10,自引:1,他引:10  
西天山艾肯达坂地区较好发育了艾肯达坂纽红色陆相火山岩建造.它不整合在下石炭统大哈拉军山组之上,未经变形和变质,属于陆陆碰撞晚期的橄榄安粗岩系,其年龄确定是厘定从碰撞造山向陆内构造演化的关键。因此,通过16件新获得的钾氩年龄测值,确定艾肯达坂组火山岩系形成在260Ma~270Ma之间,属早二叠世,而不是过去认为的石炭纪;西天山的陆陆碰撞应在二叠纪末结束,此后进入陆内造山阶段。  相似文献   
18.
A number of en échelon-arranged, southwest-facing arc fragments of Palaeozoic to Jurassic ages, sandwiched between two fairly straight east-northeast trending boundaries, constitute the basement of the Scythian and the Turan platforms located between the Laurasian and Tethyside units. They have until now largely escaped detection owing to extensive Jurassic and younger cover and the inaccessibility of the subsurface data to the international geological community. These units are separated from one another by linear/gently-curved faults of great length and steep dip. Those that are exposed show evidence of strike-slip motion. The arc units originally constituted parts of a single “Silk Road Arc” located somewhere south of the present-day central Asia for much of the Palaeozoic, although by the late Carboniferous they had been united into a continental margin arc south of the Tarim basin and equivalent units to the west and east. They were stacked into their present places in northern Afghanistan, Turkmenistan, Caucasus and the northern Black Sea by large-scale, right-lateral strike-slip coastwise transport along arc-slicing and arc-shaving strike-slip faults in the Triassic and medial Jurassic simultaneously with the subductive elimination of Palaeo-Tethys. This gigantic dextral zone (“the Silk Road transpression”) was a trans-Eurasian structure and was active simultaneously with another, similar system, the Gornostaev keirogen and greatly distorted Eurasia. The late Palaeozoic to Jurassic internal deformation of the Dniepr–Donets aulacogen was also a part of the dextral strain in southern Europe. When the emplacement of the Scythian and Turan units was completed, the elimination of Palaeo-Tethys had also ended and Neo-Tethyan arcs were constructed atop their ruins, mostly across their southern parts. The western end of the great dextral zone that emplaced the Turan and Scythian units horsetails just east of north Dobrudja and a small component goes along the Tornquist–Teisseyre lineament.  相似文献   
19.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
20.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号