首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   13篇
  国内免费   25篇
测绘学   56篇
大气科学   50篇
地球物理   20篇
地质学   7篇
海洋学   23篇
天文学   3篇
综合类   8篇
自然地理   23篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   19篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   9篇
  2008年   13篇
  2007年   15篇
  2006年   12篇
  2005年   9篇
  2004年   14篇
  2003年   10篇
  2002年   7篇
  2001年   14篇
  2000年   8篇
  1999年   5篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
排序方式: 共有190条查询结果,搜索用时 203 毫秒
101.
用NOAA卫星气象资料计算复杂地形下的流域蒸散   总被引:5,自引:0,他引:5  
陈乾  陈添宇 《地理学报》1993,48(1):61-69
本文提出一种采用NOAA卫星AVHRR和地形高度等资料,估算流域蒸散的方法。NOAA AVHRR资料用于地表覆盖分类,据此可得出各类下垫面由可能蒸发转换成实际蒸散的折算因子。该资料还可用于计算地面反射率和气温,本文利用与卫星象元相匹配的1.2'经纬度网格上的海拔高度资料将流域内少数气象站观测的气象要素作为高度的函数插到此网格上,然后用改进的彭曼模式计算了甘肃省河西内陆河10个流域中各类下垫面的蒸散和蒸发。然后与少数雪面和高山草甸区实测的资料以及用水份平衡方法估算的相应流域的蒸散比较,验证了用此方法估算逐月流域蒸散量的可靠性。  相似文献   
102.
利用AVHRR资料分析黑河地区地表特征   总被引:6,自引:7,他引:6  
魏丽  钟强 《高原气象》1989,8(3):189-194
本文利用1985年7月13日15地方时过境的AVHRR卫星资料,分析了黑河流域及邻近(150km)~2范围的地表特征。分析给出了该地区太阳可见光和近红外波段的行星反射率以及大气红外窗区亮度温度的空间变化;较详细地讨论了不同区域下垫面的一些辐射特性;最后对比分析了卫星估算和地面观测结果。  相似文献   
103.
目前,NOAA/AVHRR已有15年资料,利用其进行气候研究时必须考虑资料可靠性和连续性问题。NOAA卫星在运行过程中受多种因素影响,AVHRR探测值会发生变化。根据国内外有关研究结果,对这些变化和由这些变化带来的问题以及解决问题的方法作一介绍,供从事卫星资料应用的人员参考。  相似文献   
104.
MODIS植被指数及其分县统计分析的实现   总被引:1,自引:0,他引:1  
MODIS归一化植被指数(NDVI)已引起了广泛的注意,它与NOAA/AVHRR的NDVI既有联系又有区别。利用同一天的NOAA/AVHRR和EOS/MODIS资料,介绍了各县域内平均NDVI的统计方法和计算结果及NDVI与增强植被指数(EVI)的差异。MODIS和AVHRR两种资料得到的NDVI数值虽然有差异,但都能很好地反映植被的空间分布和时间变化。MODIS增强植被指数(EVI)对植被条件的变化更加敏感,使定量分析的精确性提高,具有较好的应用前景。  相似文献   
105.
An 8-year database of sea surface temperature (SST), 7 years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color images, wind fields, and numerical model results are analyzed to identify regions and periods of coastal upwelling on the western and southern shelves of the Gulf of Mexico. On the seasonal scale, it is found that on the Tamaulipas, Veracruz, and southwestern Texas–Louisiana shelves there are upwelling favorable winds from April to August, when southeasterly winds are dominant and cold SST anomalies associated with upwelling are observed along their coasts. However, during summer, values of chlorophyll-a concentration are lower than those in autumn and winter, which are high due to advection of old bloom biological material from upstream. During winter, there is a cold front on the Tamaulipas shelf produced by advection of cold water from the Texas–Louisiana shelf and not due to upwelling. On the eastern Campeche Bank, persistent upwelling is observed due to favorable winds throughout the year with cold SST and large chlorophyll-a content along the inner shelf from May to September. On the Tamaulipas shelf, the summer upwelling delays the annual SST peak until September, while in most of the Gulf SST peaks in August. This difference is due to the end of the upwelling favorable wind conditions and the September seasonal current reversal.  相似文献   
106.
以过境时间不同的NOAA-16/AVHRR、NOAA-17/AVHRR、FY1-D/MVRIS、TERRA/MODIS和AQUA/MODIS五种遥感影像数据组成一组序列影像,对发生在湖北省2005年2月4日的辐射雾进行了一次变化检测与分析.经地面验证,序列影像数据在雾变化检测的研究方面具有很大的潜力,检测结果动态地显示了该次大雾的形成﹑发展﹑稳定﹑消散的过程.将检测结果与该区域的DEM和水系矢量图结合分析发现,二者在辐射雾的变化发展过程中起着非常重要的作用.  相似文献   
107.
以过境时间不同的NOAA-16/AVHRR、NOAA-17/AVHRR、FY1-D/MVRIS、TERRA/MODIS和AQUA/MODIS五种遥感影像数据组成一组序列影像,对发生在湖北省2005年2月4日的辐射雾进行了一次变化检测与分析。经地面验证,序列影像数据在雾变化检测的研究方面具有很大的潜力,检测结果动态地显示了该次大雾的形成、发展、稳定、消散的过程。将检测结果与该区域的DEM和水系矢量图结合分析发现,二者在辐射雾的变化发展过程中起着非常重要的作用。  相似文献   
108.
This study tested the degree to which single date, near-nadir AVHRR image could provide forest cover estimates comparable to the phase I estimates obtained from the traditional photo-based techniques of the Forest Inventory and Analysis (FIA) program. FIA program is part of the United States Department of Agriculture-Forest Service (USFS). A six-county region in east Texas was selected for this study. Manual identification of ground control points (GCPs) was necessary for geo-referencing this image with higher precision. Through digital image classification techniques forest classes were separated from other non-forest classes in the study area. Classified AVHRR imagery was compared to two verification datasets: photo-center points and the USFS FIA plots. The overall accuracy values obtained were 67 and 71%, respectively. Analyses of the error matrices indicated that the AVHRR image correctly classified more forested areas than non-forested areas; however, most of the errors could be attributed to certain land cover and land use classes. Several pastures with tree cover, which were field-identified as non-forest, were misclassified as forest in the AVHRR image using the image classification system developed in this study. Recently harvested and young pine forests were misclassified as non-forest in the imagery. County-level forest cover estimates obtained from the AVHRR imagery were within the 95% confidence interval of the corresponding estimates from traditional photo-based methods. These results indicate that AVHRR imagery could be used to estimate county-level forest cover; however, the precision associated with these estimates was lower than that obtained through traditional photo-based techniques.  相似文献   
109.
The importance of monitoring changes in the levels of lakes within endorheic basins using remotely sensed data as a means of assessing changes in regional aridity is noted. Large salt playas are highlighted as ephemeral lakes that can display extreme sensitivity to changes in regional rainfall patterns, and which commonly do not have extensively managed catchments. To explore the application of high temporal frequency monitoring of salt playas using remote sensing, the Chott el Djerid, a large salt playa situated in southern Tunisia was targeted. A short time series of 39 Advanced Very High Resolution Radiometer (AVHRR; resolution 1.1 km at nadir) images of the Chott el Djerid (spanning 36 months between 1987 and 1990) were compiled along with climate information from a weather station at Tozeur. Using image histogram manipulation, lake areas were extracted from the time series. A good level of agreement was observed between recorded rainfall events and the presence of surface water on the playa, and for a limited sample of large flood events it was found that there were significant relationships between rainfall, evaporation and estimated lake areas (r2 = 98.5, p < 0.001). Overall, these data suggest that contemporary lake formation is largely controlled by temporal changes in effective precipitation within the basin. In addition, it was found that the coefficient of variation of the time series, and a combination of temporal reflectance profiles extracted from it, could be used to give a direct indication of which sedimentary surfaces on the playa are affected by large flood events, and the extent to which these events may be preserved within the recent sedimentary record at these sites. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
110.
Satellite-derived SSTs are validated in the northern South China Sea (NSCS) using in situ SSTs from the drifting buoys and well-calibrated sensors installed on Research/Vessel(R/V) Shiyan 3. The satellite SSTs are Advanced Very High Resolution Radiometer (AVHRR) daytime SST, AVHRR nighttime SST, Tropical rainfall Measuring Mission Microwave Imager (TMI) daytime SST and TMI nighttime SST. Availability of satellite SST, which is the ratio that the number of available satellite SST to the total ocean pixels in NSCS is calculated; annual average SST availabilities of AVHRR daytime SST, AVHRR nighttime SST, TMI daytime SST and TMI nighttime SST are 68.42%, 69.99%, 56.57% and 52.80%, respectively. Though the TMI SST availability is nearly constant throughout the year, the variations of the AVHRR SST availability are much larger because of seasonal variations of cloud cover in NSCS. Validation of the satellite-derived SSTs shows that bias±standard deviation (STD) of AVHRR SST is −0.43±0.76 and −0.33±0.79 °C for daytime and nighttime, respectively, and bias±STD of TMI SSTs is 0.07±1.11 and 0.00±0.97 °C for daytime and nighttime, respectively. It is clear that AVHRR SSTs have significant regional biases of about −0.4 °C against the drifting buoy SSTs. Differences between satellite-derived−in situ SSTs are investigated in terms of the diurnal SST cycle. When satellite-derived wind speeds decrease down below 6 m/s, the satellite SSTs become higher than the corresponding in situ SSTs, which means that the SST difference (satellite SST−Buoy SST) is positive. This wind-speed dependence of the SST difference is consistent with the previous results, which have mentioned that low wind speed coupled with clear sky conditions (high surface solar radiation) enhance the diurnal SST amplitude and the bulk-skin temperature difference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号